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Centre for Distributed and High 
Performance Computing

› A 40+ member group. Past and current funding from the Australian Research Council, 
CISCO, ERICSSON, IBM, Microsoft, Sun, Smart Internet CRC, NICTA, DSTO and CSIRO.

› The Centre’s mission is to establish a streamlined research, technology exploration and 
advanced training program. It will be a leading centre to undertake collaborative multi-
disciplinary research in support of distributed and high performance computing and related industry 
to enable advances in information technology and other application domains.

› The Centre focuses currently on several themes which build on existing strengths at Sydney 
University:

- Algorithmics and Data Mining

- Cloud Computing and Green ICT

- Internetworking

- Service Computing

- Distributed Computing Applications
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Outline

› Resource Abundance in Clouds

- Source of inefficiency or opportunity of efficiency?

- Inefficiency of current practices in resource management

› Holistic Approach to Optimization of Cloud Efficiency

- Data center level efficiency

- Individual node/resource level efficiency
- Capturing trade-off between cost and performance

› Conclusion
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Take Home Message
Source: http://www.flickr.com/photos/56104473@N04/5190273185/sizes/l/in/photostream/
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›There is a need for different usage/application 
models for cloud computing environments

›Resource allocation in clouds involves a number 
of very complex issues that will be around for 
some time

›A fertile research area with many directions



Gartner’s Strategic Technology 
Trends for 2015
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‘Efficiency’ of Resource Abundant Clouds

› Resource Efficiency ≠ Resource Utilization

› Definition of ‘Efficiency’

- Minimum resource provisioning level

- Maximum resource utilization 

- Meeting performance requirements (or high performance/throughput)

› Resource utilization

- The number of active resources over time (system/data-center level)

- The actual resource usage (e.g., CPU utilization)

› We aim to identify the minimum level of resource provisioning that 
maximizes resource utilization meeting performance requirements
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Efficiency of ‘Resource Abundant Clouds’
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The National Security 
Administration (NSA) 
data center

Google data center



Efficiency of ‘Resource Abundant Clouds’
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Inefficiency of Current Practices: 
Data Center Level

› Data center utilization is mostly below 10% 1 due to over-provisioning
› Idle servers still consume more than 50% of peak power draw 2

› Average lifespan of servers is 3 years
› Energy costs are soaring
› Public cloud services are often charged by resource hours (partial hours 

are a source of cost inefficiency)
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1 Barroso, L. and Holzle, U. “The case for energy-proportional computing”, IEEE Computer, 40(12), pp. 33-37, 2007.
2 Koomey, J. G. “Estimating total power consumption by servers in the U.S. and the world”, Lawrence Berkeley National 
Laboratory, Stanford University, 2007.
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Inefficiency of Current Practices: 
Data Center Level

walmart.com                                          sydney.edu.au

naver.com

11



Inefficiency of Current Practices: 
Individual Resource Level
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CPU utilization of scientific workflow

CPU utilization of MapReduce job Write rate (I/O resource usage) of MapReduce job



Inefficiency of Current Practices: 
individual resource level
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Visualization of executing Montage astronomical scientific workflow



Ways to Improve Efficiency: 
Data Center Level

› Dynamic, adaptive resource provisioning by exploiting elasticity in the 
cloud
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Real data center 
in the cloud
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Source: Energy Efficiency and Cloud Computing by D. Patterson in Microsoft Research Faculty Summit 2009



Optimizing Clouds

Source: http://www.flickr.com/photos/ibm_media/2071286721/



Optimizing the Efficiency of Clouds:
Our Solutions

› Resource Efficient Workflow Scheduling
- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource 

Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid 
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the 
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in 
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP), 
Sep 1-4, 2015.

› High Performance/Throughput Computing Applications
- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation 

Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing 
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE 
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Many applications in science and engineering are becoming increasingly 
large-scale and complex

› These applications are often amalgamated in the form of workflows
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Montage: 
astronomical image mosaic engine

Epigenomics: 
genome sequence processing

CyberShake: 
earthquake hazards characterization

SIPHT: 
Search for untranslated RNAs (sRNAs)



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Many applications in science and engineering are becoming increasingly 
large-scale and complex

› These applications are often amalgamated in the form of workflows
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Montage: 
astronomical image mosaic engine

Epigenomics: 
genome sequence processing

CyberShake: 
earthquake hazards characterization

SIPHT: 
Search for untranslated RNAs (sRNAs)

1 worker node for 1000 hours

≠
1000 worker nodes for 1 hour



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Resource allocation and scheduling with abundant resources

19

Cloud infrastructure

cost?

how many 
instances?

where to 
assign?



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Running scientific workflows
- Montage: an astronomical image mosaic engine

- stitches together multiple input images to create custom mosaics of the sky

- A 6.0 Degree Montage workflow contains 8,596 jobs, 1,444 input files with a total size of 4.0 
GB and 22,850 intermediate files with a total size of 35GB.
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Running scientific workflows
- How many resources are needed for a given workflow application?



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Traditionally



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

23

› Traditionally



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Today

. . .



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Today



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Resource efficient solution



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Workflow scheduling with abundant resources
- How many resources are needed for a given workflow application?

- #resources used tends to be dominated by the (maximum) width of DAG
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Our solution (stretch out and compact)
- MER (Maximum Effective 

Reduction): Compact the schedule 
by rearranging tasks making use of 
idle/inefficiency slots present due to 
precedence constraints

- CPF (Critical Path First): stretch out
the schedule to preserve critical path 
length (the shortest possible time of 
completion) using as many resources



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Stretch out: Critical Path First (CPF)
- Critical path length can be proactively preserved by assigning all CP tasks on a 

particular resource (or CP resource) ‘at the beginning’ and then scheduling 
remaining tasks
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Schedule compaction (Maximum Effective Reduction or MER)
- Makespan minimization and resource usage reduction are conflicting objectives

- Resource efficiency can be improved by resolving (or at least relieving) the 
conflict

- How?
- The inefficiency in resource usage of workflow schedule (i.e., idle slots) should 

be better exploited

30

Idle slots



Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Schedule compaction (Maximum Effective Reduction or MER)
- The difference between resource usage reduction (RUR) and makespan

increase (MI) in a resulting consolidated schedule as compared to the original 
output schedule

|R0|: #resources used in the original schedule

| R* |: #resources used in the consolidated schedule

ms0 : the original makespan

ms*: the makespan after consolidation
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling

› Experimental Evaluation
- Intel 40-core machine with 4 10-core Intel 2.4GHz Xeon 

processors
- Five real-world scientific workflows (50 - 6,000 tasks/job)

- CyberShake, Epigenomics, LIGO, Montage and SIPHT

› Evaluation metrics
- Makespan
- #Resources used
- Algorithm running time
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Results: Makespan increase w.r.t resource usage reduction
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Results: effective reduction w.r.t. different apps and algorithms
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Optimizing the Efficiency of Clouds:
Resource Efficient Workflow Scheduling
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› Results: scheduling time
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Optimizing the Efficiency of Clouds:
Our Solutions

› Resource Efficient Workflow Scheduling
- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource 

Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid 
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the 
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in 
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP), 
Sep 1-4, 2015.

› High Performance/Throughput Computing Applications
- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation 

Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing 
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE 
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› Scientists need to run these workflows with different parameters 
repeatedly, or use a combination of different workflows to achieve an 
ultimate goal

› A workflow ensemble represents an entire scientific analysis as a set of 
interrelated but independent workflow applications

› An ensemble of 200 6.0 degree Montage workflows
- 1,717,200 jobs
- 288,800 input files and 4,570,000 intermediate files, and
- Approximately 7 TB data footprint

› We need an efficient “cloud-ready” workflow execution system for 
effectively dealing with resource allocation, data staging and execution 
coordination
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE (Distributed Elastic Workflow Execution)
- Open-source project supported by AWS Education Research Grant

(https://bitbucket.org/lleslie/dwf/wiki/Home)
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE (Distributed Elastic Workflow Execution)
- The workflow visualization toolkit takes a workflow execution trace file as the 

input, and produces a scalable vector graph (SVG) or PDF representing the 
resource consumption status during the execution.
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE (Distributed Elastic Workflow Execution)
- The workflow visualization toolkit takes a workflow execution trace file as the 

input, and produces a scalable vector graph (SVG) or PDF representing the 
resource consumption status during the execution.
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE vs. Pegasus (well-known workflow execution system)
- Resource consumption of multiple 6.0 degree Montage workflows on Amazon 

EC2 c3.8xlarge instance
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE evaluation
- Node Performance Index P is used after profiling 

W: the number of workflows

N: the number of worker nodes

T: the execution time needed for N workflows

Then, we can estimate the number of worker nodes needed to execute a large 
scale workflow ensemble with deadline constraints using the following formula:
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Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE evaluation
- Cluster configurations

- Workflows

- 50 - 200 6.0 degree Montage workflows

- Deadline constraint: 1 hour

43

Cluster #Nodes #vCPUs Memory 
(TB)

Storage 
(TB)

Price 
(USD/hr)

c3.8xlarge 40 1280 2.40 25.6 67.2

r3.8xlarge 25 800 6.10 16.0 70.0

i2.8xlarge 23 768 5.61 147.2 156.7

i2.8xlarge B 10 320 2.44 64.0 68.2



Optimizing the Efficiency of Clouds:
Executing Large-scale Workflow Ensembles

› DEWE evaluation
- Results: 

- By adopting the pulling approach in our solution system, much of scheduling overhead can be 
removed as a majority of tasks in scientific workflows often exhibit homogeneity in their 
resource consumption pattern and acquiring a large number of homogeneous public cloud 
resources is easily possible.

- 80% speed-up compared to Pegasus

- Cost and deadline compliance can be achieved
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Optimizing the Efficiency of Clouds:
Our Solutions

› Resource Efficient Workflow Scheduling
- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource 

Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid 
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the 
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in 
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP), 
Sep 1-4, 2015.

› High Performance/Throughput Computing Applications
- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation 

Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing 
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE 
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Why cloud bursting?

- Many organizations already operate their own computing 
facilities, called private clouds or data centres

- Multi-cloud model is practical and realistic in many 
scenarios:
- Security is a major concern (compared to cloud sourcing)
- Workloads exhibit different characteristics
- Sporadic workload surges occur (a major source of over 
provisioning, inefficient resource usage)
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Tools for cloud bursting
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications
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› Different users have a diverse set of applications  possibly with different 
objectives, e.g., performance/time, cost, etc.

› Cloud providers offers a number of different services
- E.g.,  Standard, High-CPU, High-Memory, Compute Cluster, GPU Cluster

› Usage is typically charged by the hour

› Cost to performance ratio (cost efficiency) may vary significantly by 
scheduling and resource allocation

s0

s1 s3

s2

Time
Cost



Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications
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› Private system often gets overwhelmed by resource requirement of bag-of-tasks 
(BoT) applications
- BoT applications are common in science and engineering 

- Monte Carlo simulations

- CycleCloud: more than 10 machine years

Unable to 
handle



Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Cloud bursting with BoT applications
- Multi-cloud model

- Public and private cloud resources:                 and 
- BoT application model
- Set of n tasks
- Pi : amount of time required to complete, unknown in 

advance
- If task j run on machine i, it takes Pj /si to finish.

- Objective function
- User has two conflicting objectives of minimizing cost and 

maximizing performance (minimizing makespan)
51



Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Closer look to objective function
- Pareto optimality effectively captures the trade off between two conflicting objectives
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› PANDA (PAreto Near-optimal Deterministic Approximation)
- A fully polynomial time approximation scheme (FPTAS) with input size n and 

approximation factor ԑ 

› Four major steps
- Pre-processing

- Tasks are pre-processed for their lengths to be equalized

- Task selection with trimming

- Tasks are selected by solving subset sum problem

- Task assignment

- Each machine gets its workload (optimal #tasks) 

- Solution refinement

- A task currently assigned to a slow resource is moved to 
a faster resource such that the time required by 
the faster resource does not incur any extra cost
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Optimal task assignment: integer programming

› Optimal solution for relaxed problem:
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

55

› Pre-processing:

› Task selection:

› Task assignment

› Refinement



Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Experimental evaluation

› We modeled ISOMAP as a real-world BoT application.
- consists of tens of thousands of (CPU-intensive) tasks.

- each task runs for seconds or up to tens of minutes.

- Job sizes in million seconds (Ms): {1 Ms, 5 Ms, 10 Ms, 17 Ms}

› Multi-cloud setting
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Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

› Pareto frontier reached (1) theoretically, (2) by PANDA, and (3) by a modified List 
heuristic

57

Li = 5, ԑ = 0.1, and job size = 10Ms (on m1.small)



Optimizing the Efficiency of Clouds:
A Case for HPC/HTC applications

58

› Average values of makespan and total cost with respect to different 
sizes of BoT applications.

Li = 20, ԑ = 0.1 on m1.small



Unknown task execution times

› PESU (Pareto Efficient Scheduling with Uncertainty)
- We devise a dynamic resource allocation solution with a hybrid task running time 

estimation technique based on a feedback control mechanism

› Three phases
- Estimation

- estimates the execution time of each task using existing estimation techniques 

- Pareto-efficient point generation

- Generates possible Pareto-efficient schedules

- Resource allocation

- Allocates resources for the selected Pareto-efficient point
59



Unknown task execution times
› PESU
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Unknown task execution times
› Running time estimation

We use existing estimation techniques (e.g., ATOM, Pin, and Valgrind) in an 
iterative fashion

1. Add several breakpoints to each task

2. Assign an accurate weight to each tool by monitoring and comparing the 
actual running time of breaking points

3. Divide the whole time horizon into equal intervals 

4. At the beginning of each interval, a monitoring phase happens:

- the actual revealed running time and the estimated running time are compared 
to evaluate the accuracy of each estimation tool.
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Experimental evaluation: Unknown
task execution times

› We modeled ISOMAP as a real-world BoT application.

› Multi-cloud setting
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Results: Unknown task execution 
times

• Comparison of makespan and cost
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Short tasks                          Short + Long tasks                      Long 
tasks



Simple ideas, but hard to implement!!!!



Conclusion

› Today, with advances in VM techniques and the advent of multi-
/many-core processors, resources are ever abundant

› Computing and data processing needs continuously increase

› Simply expanding resource capacity has resulted in poor resource 
utilization, i.e., average data center utilization is 10-30% or less

› Adaptive resource management for typical workloads in clouds are 
essential
- Workflows: Maximization of resource utilization with min 

performance impact

- HPC/HTC apps: Capturing trade-off between cost and performance
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Sample of current research projects

› Cost Efficiency of the Data Centre

- Cost reductions and profit increases (e.g. game theoretic methods)

- Pay-as-you-go pricing, pricing dynamics

› Implications of multi tenancy

- Resource virtualization  Resource contention (migrate VMs?)

- Current SLAs: only availability (need to consider performance?)

› Scheduling and resource allocation as a cost efficient solution (energy 
minimization

- Exploitation of application characteristics (e.g. data locality, latency, quality of 
service, execution time)

- Explicit consideration of user experience/satisfaction

- Map reducing applications, tuning Map reducible applications.

- Hybrid clouds, cloud bursting for execution time, energy efficiency, pricing, privacy
66



Other recent work
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(2015)
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Guojun Wang:
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Cloud Computing 3(2): 101-104 (2015)
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