Resource Management in Cloud Computing Systems

FACULTY OF ENGINEERING & INFORMATION TECHNOLOGIES

> Albert Y. Zomaya | Professor and Director Centre for Distributed and High Performance Computing School of Information Technologies

Centre for Distributed and High Performance Computing

- > A 40+ member group. Past and current funding from the Australian Research Council, CISCO, ERICSSON, IBM, Microsoft, Sun, Smart Internet CRC, NICTA, DSTO and CSIRO.
- > The Centre's mission is to establish a streamlined research, technology exploration and advanced training program. It will be a leading centre to undertake collaborative multi-disciplinary research in support of *distributed* and *high performance computing* and related industry to enable advances in information technology and other application domains.
- > The Centre focuses currently on several themes which build on existing strengths at Sydney University:
 - Algorithmics and Data Mining
 - Cloud Computing and Green ICT
 - Internetworking
 - Service Computing
 - Distributed Computing Applications

Outline

> Resource Abundance in Clouds

- Source of inefficiency or opportunity of efficiency?
- Inefficiency of current practices in resource management

> Holistic Approach to Optimization of Cloud Efficiency

- Data center level efficiency
- Individual node/resource level efficiency
- Capturing trade-off between cost and performance

Conclusion

Take Home Message

Source: http://www.flickr.com/photos/56104473@N04/5190273185/sizes/l/in/photostream/

>There is a need for different usage/application models for cloud computing environments

Resource allocation in clouds involves a number of very complex issues that will be around for some time

A fertile research area with many directions

Gartner's Strategic Technology Trends for 2015

'Efficiency' of Resource Abundant Clouds

- **>** Resource Efficiency \neq Resource Utilization
- > Definition of 'Efficiency'
 - Minimum resource provisioning level
 - Maximum resource utilization
 - Meeting performance requirements (or high performance/throughput)
- > Resource utilization
 - The number of active resources over time (system/data-center level)
 - The actual resource usage (e.g., CPU utilization)
- > We aim to identify the minimum level of resource provisioning that maximizes resource utilization meeting performance requirements

Efficiency of 'Resource Abundant Clouds'

Efficiency of 'Resource Abundant Clouds'

- Data center utilization is mostly below 10%¹ due to over-provisioning
- > Idle servers still consume more than 50% of peak power draw²
- > Average lifespan of servers is 3 years
- > Energy costs are soaring
- Public cloud services are often charged by resource hours (partial hours are a source of cost inefficiency)

¹ Barroso, L. and Holzle, U. "The case for energy-proportional computing", IEEE Computer, 40(12), pp. 33-37, 2007. ² Koomey, J. G. "Estimating total power consumption by servers in the U.S. and the world", Lawrence Berkeley National Laboratory, Stanford University, 2007.

Inefficiency of Current Practices: Data Center Level

walmart.com

sydney.edu.au

Jan

Apr

Jul

Oct

Inefficiency of Current Practices: Individual Resource Level

Inefficiency of Current Practices: individual resource level

mProjectPP	mDiffFit 100	■ mConcatFit 200	■ mBgModel	■ mBackgrou 300	nd mImgtbl 400	■mAdd	mShrink 500	mJPEG 600	Communication 700	800	900	1(000
10.231.0.94 : Co	ompute Time:	31 s, 28 s, 29 s,	27 s, 31 s, 26 s	27 s, 31 s, Co	mmunication Ti	me: 372 s,	373 s, 372 s, 371 s, :	374 s, 375 s, 374	s, 363 s,				
10.167.187.56 :	Compute Tim	e: 659 s, 229 s,	238 s, 216 s, 23	0 s, 225 s, 217	' s, 230 s, Comm	unication	Time: 244 s, 238 s, 2	34 s, 248 s, 238 s	s, 247 s, 248 s, 238	s,			
10.182.231.54 :	Compute Tim	e: 46 s, 31 s, 28	s, 30 s, 33 s, 34	4 s, 29 s, 28 s, 0	Communication	Time: 360	s, 364 s, 368 s, 361	s, 365 s, 357 s, 30	68 s, 366 s,				
											-	_	
10.146.168.208	: Compute Tir 100	me: 83 s, 81 s, 9 200	00 s, 119 s, 87 s,	100 s, 117 s, 1 300	.09 s, Communio 400	cation Tim	e: 411 s, 419 s, 388 s 500	, 498 s, 421 s, 45 600	9 s, 476 s, 491 s, 700	800	900	1(000

Visualization of executing Montage astronomical scientific workflow

Ways to Improve Efficiency: Data Center Level

> Dynamic, adaptive resource provisioning by exploiting **elasticity** in the cloud

Source: Energy Efficiency and Cloud Computing by D. Patterson in Microsoft Research Faculty Summit 2009

Optimizing Clouds

Source: http://www.flickr.com/photos/ibm_media/2071286721/

Optimizing the Efficiency of Clouds: Our Solutions

- > Resource Efficient Workflow Scheduling
 - Lee, Y. C. and Zomaya, A. Y., "Stretch Out and Compact: Workflow Scheduling with Resource Abundance," in the *Proceedings of the International Symposium on Cluster Cloud and the Grid* (*CCGRID*), May 13-16, 2013.
 - Lee, Y. C., Han, H. and Zomaya, A. Y., "On Resource Efficiency of Workflow Schedules," in the *Proceedings of the International Conference on Computational Science (ICCS)*, Jun. 10-12, 2014.
 - Jiang, Q., Lee, Y. C. and Zomaya, A. Y., "Executing Large Scale Scientific Workflow Ensembles in Public Clouds," in the *Proceedings of the International Conference on Parallel Processing (ICPP)*, Sep 1-4, 2015.
- > High Performance/Throughput Computing Applications
 - HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., "Randomized Approximation Scheme for Resource Allocation in Hybrid-Cloud Environment," *The Journal of Supercomputing* 69(2): 576-592, 2014.
 - Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., "Pareto-Optimal Cloud Bursting," *IEEE Transactions on Parallel and Distributed Systems*, 25(10): 2670-2682, 2014.

- Many applications in science and engineering are becoming increasingly large-scale and complex
- > These applications are often amalgamated in the form of workflows

> Resource allocation and scheduling with abundant resources

- > Running scientific workflows
 - Montage: an astronomical image mosaic engine
 - stitches together multiple input images to create custom mosaics of the sky
 - A 6.0 Degree Montage workflow contains 8,596 jobs, 1,444 input files with a total size of 4.0 GB and 22,850 intermediate files with a total size of 35GB.

- > Running scientific workflows
 - How many resources are needed for a given workflow application?

> Resource efficient solution

- > Workflow scheduling with abundant resources
 - How many resources are needed for a given workflow application?
 - #resources used tends to be dominated by the (maximum) width of DAG

> Our solution (stretch out and compact)

- CPF (Critical Path First): **stretch out** the schedule to preserve critical path length (the shortest possible time of completion) using as many resources
- MER (Maximum Effective Reduction): Compact the schedule by rearranging tasks making use of idle/inefficiency slots present due to precedence constraints

- Schedule compaction (Maximum Effective Reduction or MER)
 - Makespan minimization and resource usage reduction are conflicting objectives
 - Resource efficiency can be improved by resolving (or at least relieving) the conflict
 - How?
 - The inefficiency in resource usage of workflow schedule (i.e., idle slots) should be better exploited

- Schedule compaction (Maximum Effective Reduction or MER)
 - The difference between resource usage reduction (RUR) and makespan increase (MI) in a resulting consolidated schedule as compared to the original output schedule

> Effective Reduction (ER) =
$$\frac{(|R^0| - |R^*|)}{|R^0|} - \frac{(|ms^*| - |ms^0|)}{|ms^0|}$$

 $|R^{0}|$: #resources used in the original schedule

 $|R^*|$: #resources used in the consolidated schedule

*ms*⁰: the original makespan

ms^{*}: the makespan after consolidation

- > Experimental Evaluation
 - Intel 40-core machine with 4 10-core Intel 2.4GHz Xeon processors
 - Five real-world scientific workflows (50 6,000 tasks/job)
 - CyberShake, Epigenomics, LIGO, Montage and SIPHT
- > Evaluation metrics
 - Makespan
 - #Resources used
 - Algorithm running time

> Results: Makespan increase w.r.t resource usage reduction

> Results: effective reduction w.r.t. different apps and algorithms

> Results: scheduling time

Optimizing the Efficiency of Clouds: Our Solutions

> Resource Efficient Workflow Scheduling

- Lee, Y. C. and Zomaya, A. Y., "Stretch Out and Compact: Workflow Scheduling with Resource Abundance," in the *Proceedings of the International Symposium on Cluster Cloud and the Grid* (*CCGRID*), May 13-16, 2013.
- Lee, Y. C., Han, H. and Zomaya, A. Y., "On Resource Efficiency of Workflow Schedules," in the *Proceedings of the International Conference on Computational Science (ICCS)*, Jun. 10-12, 2014.
- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., "Executing Large Scale Scientific Workflow Ensembles in Public Clouds," in the *Proceedings of the International Conference on Parallel Processing (ICPP)*, Sep 1-4, 2015.
- > High Performance/Throughput Computing Applications
 - HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., "Randomized Approximation Scheme for Resource Allocation in Hybrid-Cloud Environment," *The Journal of Supercomputing* 69(2): 576-592, 2014.
 - Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., "Pareto-Optimal Cloud Bursting," *IEEE Transactions on Parallel and Distributed Systems*, 25(10): 2670-2682, 2014.

Optimizing the Efficiency of Clouds: Executing Large-scale Workflow Ensembles

- Scientists need to run these workflows with different parameters repeatedly, or use a combination of different workflows to achieve an ultimate goal
- A workflow ensemble represents an entire scientific analysis as a set of interrelated but independent workflow applications
- > An ensemble of 200 6.0 degree Montage workflows
 - 1,717,200 jobs
 - 288,800 input files and 4,570,000 intermediate files, and
 - Approximately 7 TB data footprint
- We need an efficient "cloud-ready" workflow execution system for effectively dealing with resource allocation, data staging and execution coordination

- Open-source project supported by AWS Education Research Grant (https://bitbucket.org/lleslie/dwf/wiki/Home)

- > DEWE (Distributed Elastic Workflow Execution)
 - The workflow visualization toolkit takes a workflow execution trace file as the input, and produces a scalable vector graph (SVG) or PDF representing the resource consumption status during the execution.

- > DEWE (Distributed Elastic Workflow Execution)
 - The workflow visualization toolkit takes a workflow execution trace file as the input, and produces a scalable vector graph (SVG) or PDF representing the resource consumption status during the execution.

EC2 c3.8xlarge instance

- > DEWE evaluation
 - Node Performance Index P is used after profiling

$$P = \frac{W}{N * T}$$

W: the number of workflows

N: the number of worker nodes

T: the execution time needed for N workflows

Then, we can estimate the number of worker nodes needed to execute a large scale workflow ensemble with deadline constraints using the following formula:

$$N = \frac{W}{P * T}$$

Optimizing the Efficiency of Clouds: Executing Large-scale Workflow Ensembles

- > DEWE evaluation
 - Cluster configurations

Cluster	#Nodes	#vCPUs	Memory (TB)	Storage (TB)	Price (USD/hr)
c3.8xlarge	40	1280	2.40	25.6	67.2
r3.8xlarge	25	800	6.10	16.0	70.0
i2.8xlarge	23	768	5.61	147.2	156.7
i2.8xlarge B	10	320	2.44	64.0	68.2

- Workflows
 - 50 200 6.0 degree Montage workflows
- Deadline constraint: 1 hour

Optimizing the Efficiency of Clouds: Executing Large-scale Workflow Ensembles

- > DEWE evaluation
 - Results:
 - By adopting the pulling approach in our solution system, much of scheduling overhead can be removed as a majority of tasks in scientific workflows often exhibit homogeneity in their resource consumption pattern and acquiring a large number of homogeneous public cloud resources is easily possible.
 - 80% speed-up compared to Pegasus
 - Cost and deadline compliance can be achieved

Optimizing the Efficiency of Clouds: Our Solutions

- > Resource Efficient Workflow Scheduling
 - Lee, Y. C. and Zomaya, A. Y., "Stretch Out and Compact: Workflow Scheduling with Resource Abundance," in the *Proceedings of the International Symposium on Cluster Cloud and the Grid* (*CCGRID*), May 13-16, 2013.
 - Lee, Y. C., Han, H. and Zomaya, A. Y., "On Resource Efficiency of Workflow Schedules," in the *Proceedings of the International Conference on Computational Science (ICCS)*, Jun. 10-12, 2014.
 - Jiang, Q., Lee, Y. C. and Zomaya, A. Y., "Executing Large Scale Scientific Workflow Ensembles in Public Clouds," in the *Proceedings of the International Conference on Parallel Processing (ICPP)*, Sep 1-4, 2015.

> High Performance/Throughput Computing Applications

- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., "Randomized Approximation Scheme for Resource Allocation in Hybrid-Cloud Environment," *The Journal of Supercomputing* 69(2): 576-592, 2014.
- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., "Pareto-Optimal Cloud Bursting," *IEEE Transactions on Parallel and Distributed Systems*, 25(10): 2670-2682, 2014.

> Why cloud bursting?

- Many organizations already operate their own computing facilities, called private clouds or data centres
- Multi-cloud model is practical and realistic in many scenarios:
 - Security is a major concern (compared to cloud sourcing)
 - Workloads exhibit different characteristics
 - Sporadic workload surges occur (a major source of over provisioning, inefficient resource usage)

> Tools for cloud bursting

OpenNebula.org

The Open Source Solution for Data Center Virtualization

Cluster-based virtualization management software

Cluster Manager

- > Different users have a diverse set of applications possibly with different objectives, e.g., performance/time, cost, etc.
- > Cloud providers offers a number of different services
 - E.g., Standard, High-CPU, High-Memory, Compute Cluster, GPU Cluster
- > Usage is typically charged by the hour
- Cost to performance ratio (cost efficiency) may vary significantly by scheduling and resource allocation

- Private system often gets overwhelmed by resource requirement of bag-of-tasks (BoT) applications
 - BoT applications are common in science and engineering
 - Monte Carlo simulations
 CycleCloud: more than 10 machine years
 BoT job
 Unable to handle

Cloud bursting with BoT applications

- Multi-cloud model
 - Public and private cloud resources: (s1,s2 ... sk) and (c1, c2 ... ck)
 - BoT application model
 - Set of *n* tasks
 - *Pi* : amount of time required to complete, unknown in advance
 - If task *j* run on machine *i*, it takes Pj /s_{*i*} to finish.
- Objective function
 - User has two conflicting objectives of minimizing cost and maximizing performance (minimizing makespan)

- > Closer look to objective function
 - Pareto optimality effectively captures the trade off between two conflicting objectives

> PANDA (PAreto Near-optimal Deterministic Approximation)

- A fully polynomial time approximation scheme (FPTAS) with input size *n* and approximation factor ε
- > Four major steps
 - Pre-processing
 - Tasks are pre-processed for their lengths to be equalized
 - Task selection with trimming
 - Tasks are selected by solving subset sum problem
 - Task assignment
 - Each machine gets its workload (optimal #tasks)
 - Solution refinement
 - A task currently assigned to a slow resource is moved to a faster resource such that the time required by the faster resource does not incur any extra cost

> Optimal task assignment: integer programming

$$\min z = \sum_{i \in \Gamma} L_i c_i \left[\frac{x_i P}{s_i} \right] \frac{x_i P}{s_i} + L_v c_v \left(\frac{x_v P}{s_v} \right)^2$$

s.t.
$$\sum_{i \in \Gamma} L_i x_i + L_v x_v = n$$
$$x_v, x_i \in \mathbb{Z}^{\ge 0}$$

> Optimal solution for relaxed problem:

$$x_{i} = \frac{nL_{i}}{\alpha_{i} \sum_{j \in \Gamma \cup \{v\}} \frac{L_{j}^{2}}{\alpha_{j}}} , \quad \forall i \in \Gamma \cup \{v\}$$
$$\approx \alpha_{i} = L_{i}c_{i}P^{2}/s_{i}^{2}, \text{ for } i \in \Gamma \cup \{v\}$$

> Experimental evaluation

- > We modeled ISOMAP as a real-world BoT application.
 - consists of tens of thousands of (CPU-intensive) tasks.
 - each task runs for seconds or up to tens of minutes.
 - Job sizes in million seconds (Ms): {1 Ms, 5 Ms, 10 Ms, 17 Ms}

Cloud	Res. Type	Proc. Capacity	Hourly Cost
	m1.small	1	\$0.080
Amazon EC2	c1.medium	5	\$0.165
US East (VA)	m1.large	4	\$0.320
	c1.xlarge	20	\$0.660
Private	4x10-core Xeon	10	\$0.320

> Multi-cloud setting

> Pareto frontier reached (1) theoretically, (2) by PANDA, and (3) by a modified List heuristic

 Average values of makespan and total cost with respect to different sizes of BoT applications.

BoT	Lis	st_{η}	PAN	IDA	Optiı	nal
size	ms(h)	cost	ms(h)	cost	ms(ĥ)	cost
1M.s.	2.2	66.0	1.8	58.5	1.5	58.5
5M.s.	4.2	118.4	3.6	117.2	3.3	117.2
10M.s.	5.5	153.5	4.9	146.0	4.5	146.0
17M.s.	9.7	241.7	8.2	215.6	7.9	192.8

 $L_i = 20, \epsilon = 0.1$ on m1.small

Unknown task execution times

> **PESU** (Pareto Efficient Scheduling with Uncertainty)

- We devise a dynamic resource allocation solution with a hybrid task running time estimation technique based on a feedback control mechanism

> Three phases

- Estimation
 - estimates the execution time of each task using existing estimation techniques
- Pareto-efficient point generation
 - Generates possible Pareto-efficient schedules
- Resource allocation
 - Allocates resources for the selected Pareto-efficient point

Unknown task execution times

> PESU

60

Unknown task execution times

> Running time estimation

We use existing estimation techniques (e.g., ATOM, Pin, and Valgrind) in an iterative fashion

- 1. Add several breakpoints to each task
- 2. Assign an accurate weight to each tool by monitoring and comparing the actual running time of breaking points
- 3. Divide the whole time horizon into equal intervals
- 4. At the beginning of each interval, a monitoring phase happens:
- the actual revealed running time and the estimated running time are compared to evaluate the accuracy of each estimation tool.

Experimental evaluation: Unknown task execution times

> We modeled ISOMAP as a real-world BoT application.

Туре	No. Tasks	Task Length
(BoT size, Task Running Time)	= $10k \times 2^x$	$=2^{x}$ (minitue)
LS (Large, Short)	$x \sim \text{Wbl}(1.7,2)$	$x \sim U(0,3)$
LL (Large, Long)	$x \sim \text{Wbl}(1.7,2)$	$x \sim N(3.5,3)$
LM (Large, Mixture)	$x \sim \text{Wbl}(1.7,2)$	$x \sim N(1.8,3)$

> Multi-cloud setting

Cloud	Res. Type	Proc. Capacity	Hourly Cost
	m1.small	1	\$0.080
Amazon EC2	c1.medium	5	\$0.165
US East (VA)	m1.large	4	\$0.320
	c1.xlarge	20	\$0.660
Private	4x10-core Xeon	10	\$0.320

Results: Unknown task execution times

Comparison of makespan and cost

Simple ideas, but hard to implement!!!!

Ideas are easy. Implementation is hard. Guy Kawasaki

Conclusion

- > Today, with advances in VM techniques and the advent of multi-/many-core processors, resources are ever abundant
- > Computing and data processing needs continuously increase
- > Simply expanding resource capacity has resulted in poor resource utilization, i.e., average data center utilization is 10-30% or less
- Adaptive resource management for typical workloads in clouds are essential
 - Workflows: Maximization of resource utilization with min performance impact
 - HPC/HTC apps: Capturing trade-off between cost and performance

Sample of current research projects

> Cost Efficiency of the Data Centre

THE UNIVERSITY OF

- Cost reductions and profit increases (e.g. game theoretic methods)
- Pay-as-you-go pricing, pricing dynamics
- > Implications of multi tenancy
 - Resource virtualization \rightarrow Resource contention (migrate VMs?)
 - Current SLAs: only availability (need to consider performance?)
- Scheduling and resource allocation as a cost efficient solution (energy minimization
 - Exploitation of application characteristics (e.g. data locality, latency, quality of service, execution time)
 - Explicit consideration of user experience/satisfaction
 - Map reducing applications, tuning Map reducible applications.
 - Hybrid clouds, cloud bursting for execution time, energy efficiency, pricing, privacy

Other recent work

- Rajiv Ranjan, Joanna Kolodziej, Lizhe Wang, Albert Y. Zomaya: Cross-Layer Cloud Resource Configuration Selection in the Big Data Era. IEEE Cloud Computing 2(3): 16-22 (2015)
- Lingfang Zeng, Bharadwaj Veeravalli, Albert Y. Zomaya: An integrated task computation and data management scheduling strategy for workflow applications in cloud environments. J. Network and Computer Applications 50: 39-48 (2015)
- Rajiv Ranjan, Lizhe Wang, Albert Y. Zomaya, Dimitrios Georgakopoulos, Xian-He Sun, Guojun Wang:
 Recent advances in autonomic provisioning of big data applications on clouds. IEEE Trans. Cloud Computing 3(2): 101-104 (2015)
- Lizhe Wang, Yan Ma, Albert Y. Zomaya, Rajiv Ranjan, Dan Chen: A Parallel File System with Application-Aware Data Layout Policies for Massive Remote Sensing Image Processing in Digital Earth. IEEE Trans. Parallel Distrib. Syst. 26(6): 1497-1508 (2015)

Thank you

