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> A 40+ member group. Past and current funding from the Australian Research Council,
CISCO, ERICSSON, IBM, Microsoft, Sun, Smart Internet CRC, NICTA, DSTO and CSIRO.

» The Centre’s mission is to establish a streamlined research, technology exploration and
advanced training program. It will be a leading centre to undertake collaborative multi-
disciplinary research in support of distributed and high performance computing and related industry
to enable advances in information technology and other application domains.

» The Centre focuses currently on several themes which build on existing strengths at Sydney
Unitversity:

Algorithmics and Data Mining

Cloud Computing and Green ICT

Internetworking

Service Computing

Distributed Computing Applications
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> Resource Abundance in Clouds
- Source of inefficiency or opportunity of etficiency?

- Inefficiency of current practices in resource management

» Holistic Approach to Optimization of Cloud Efficiency
- Data center level efficiency
- Individual node/resource level efficiency

- Capturing trade-off between cost and performance

> Conclusion
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Take Home Message

Source: http://www.flickr.com/photos/56104473@N04/5190273185/sizes/l/in/photostream/
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» There is a need for different usage/application
models for cloud computing environments

» Resource allocation in clouds involves a number

of very complex 1ssues that will be around for
some time

» A fertile research area with many directions




Merging the Real World and the Virtual World

Computing Everywhere The Internet of Things 3D Printing
/

Intelligence Everywhere

Advanced, Pervasive Context-Rich Systems Smart Machines
and Invisible Analytics

PR Q

The New IT Reality Emerges

Software-Defined
Cloud/Client Applications and Risk-Based Security
Computing Infrastructure Web-Scale IT and Self-Protection

gartner.com/SmarterWithGartner

14 Gartner, Inc. andfor its affiliates. Al rights resarved.
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» Resource Efficiency # Resource Utilization
» Definition of ‘Efficiency’

- Minimum resource provisioning level

- Maximum resource utilization

- Meeting performance requirements (or high performance/throughput)
» Resource utilization

- The number of active resources over time (system/data-center level)

- The actual resource usage (e.g., CPU utilization)

» We aim to identify the minimum level of resource provisioning that
maximizes resource utilization meeting performance requirements
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Capacity

Resources

Demand
Unused resources

N
7

Time
» Data center utilization is mostly below 10% ' due to over-provisioning

» ldle servers still consume more than 50% of peak power draw 2
» Average lifespan of servers is 3 years
» Energy costs are soaring

» Public cloud services are often charged by resource hours (partial hours
are a source of cost inefficiency)

' Barroso, L. and Holzle, U. “The case for energy-proportional computing”, IEEE Computer, 40(12), pp. 33-37, 2007.
2Koomey, J. G. “Estimating total power consumption by servers in the U.S. and the world”, Lawrence Berkeley National
Laboratory, Stanford University, 2007.
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> Dynamic, adaptive resource provisioning by exploiting elasticity in the
cloud

Resources

Time

Real data center
in the cloud

Source: Energy Efficiency and Cloud Computing by D. Patterson in Microsoft Research Faculty Summit 2009

14



Optimizing Clouds

Source: http://www.flickr.com/photos/ibm_media/2071286721/
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» Resource Efficient Workflow Scheduling

- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource
Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP),
Sep 1-4, 2015.

» High Performance/Throughput Computing Applications

- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation

Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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» Many applications in science and engineering are becoming increasingly
large-scale and complex

» These applications are often amalgamated in the form of workflows

g’

Montage: Epigenomics: CyberShake:
o ) ) genome sequence processing earthquake hazards characterization
astronomical image mosaic engine
o O
‘111
&

SIPHT:
Search for untranslated RNAs (sRNAs)

17
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» Many applications in science and engineering 3
E cale and complex

y These ¢ 23 are oftg amz form.a DWS

pecoming increasingly

1 worker node for 1000 hours

+

1000 worker nodes for 1 hour

Viontage:

astronomical image mosaic engi

SIPHT:
Search for untranslated RNAs (sRNAs)
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> Resource allocation and scheduling with abundant resources

where to
assign?
O *4

OO
OOO

16666600 how many
ll@'l instances? K
; @) &
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» Running scientific workflows

- Montage: an astronomical image mosaic engine
- stitches together multiple input images to create custom mosaics of the sky

- A 6.0 Degree Montage workflow contains 8,596 jobs, 1,444 input files with a total size of 4.0
GB and 22,850 intermediate files with a total size of 35GB.

Input Reprojection <—————Background Rectification—— Co-Addition Output
Project - Background
Ditf | FitFlane
Image 2 Project : W —— BgModel H=| Background
o — Diff FitPlana ' B
Project Background

Corrected
m101 mosaic

Uncorrected
m101 mosaic
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» Running scientific workflows

- How many resources are needed for a given workflow application?
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» Traditionally
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» Today
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» Resource efficient solution

| | I
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» Workflow scheduling with abundant resources
- How many resources are needed for a given workflow application?

- #resources used tends to be dominated by the (maximum) width of DAG

“QQQQQQQ\®©“@1&%®@@
E_ﬁ - / y m_ oS ms e
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» Our solution (stretch out and compact)

- CPF (Critical Path First): stretch out
the schedule to preserve critical path
length (the shortest possible time of
completion) using as many resources

time

- MER (Maximum Effective
Reduction): Compact the schedule
by rearranging tasks making use of
idle/inefficiency slots present due to
precedence constraints

SPPP PUPD DI DI
< = < = = N = =

|

i

time
T
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» Stretch out: Critical Path First (CPF)

- Critical path length can be proactively preserved by assigning all CP tasks on a
particular resource (or CP resource) ‘at the beginning’ and then scheduling

remaining tasks
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» Schedule compaction (Maximum Effective Reduction or MER)
- Makespan minimization and resource usage reduction are conflicting objectives

- Resource efficiency can be improved by resolving (or at least relieving) the
conflict

- How?

- The inefficiency in resource usage of workflow schedule (i.e., idle slots) should

be better exploited
Py

|dle slots

30
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» Schedule compaction (Maximum Effective Reduction or MER)

- The difference between resource usage reduction (RUR) and makespan
increase (MI) in a resulting consolidated schedule as compared to the original

output schedule

. . _ UR%[=IR7]) _ (Ims”|-|ms®])
» Effective Reduction (ER) = RO o]

|RY|: #resources used in the original schedule
| R|: #resources used in the consolidated schedule
ms?: the original makespan

ms”: the makespan after consolidation

31
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» Experimental Evaluation

- Intel 40-core machine with 4 10-core Intel 2.4GHz Xeon
Processors

- Five real-world scientific workflows (50 - 6,000 tasks/job)
- CyberShake, Epigenomics, LIGO, Montage and SIPHT

» Evaluation metrics
- Makespan
- #Resources used
- Algorithm running time

32
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> Results: Makespan increase w.r.t resource usage reduction

1
Z 09 % ¢ CyberShake
o 08 m Epigenomics
c > ALIGO
S 07 x
3] 2 X Montage
S 0.6 B
o o' m X SIPHT
® 05
(]
&
S 0.4
-
o 0.3
o
§ 0.2 _a
S 018
0 . .

0O 01 02 03 04 05 06 0.7 08 09 1

Makespan Increase (Ml)
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» Results: effective reduction w.r.t. different apps and algorithms

Effective Reduction (ER)

mEFT =CPF mCPOP mDCP

CyberShake Epigenomics LIGO Montage SIPHT

Workflow Application
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» Results: scheduling time

530
EFT B EFT-compaction-overhead
520 - CPF ® CPF-compaction-overhead
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» Resource Efficient Workflow Scheduling

- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource
Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP),
Sep 1-4, 2015.

» High Performance/Throughput Computing Applications

- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation
Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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» Scientists need to run these workflows with different parameters
repeatedly, or use a combination of different workflows to achieve an
ultimate goal

» Aworkflow ensemble represents an entire scientific analysis as a set of
interrelated but independent workflow applications

> An ensemble of 200 6.0 degree Montage workflows
- 1,717,200 jobs
- 288,800 input files and 4,570,000 intermediate files, and
- Approximately 7 TB data footprint

» We need an efficient “cloud-ready” workflow execution system for

effectively dealing with resource allocation, data staging and execution
coordination

37
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» DEWE (Distributed Elastic Workflow Execution)

- Open-source project supported by AWS Education Research Grant
(https://bitbucket.org/lleslie/dwf/wiki/Home)

Amazon EC2
LeaselTerminate‘
Workers
Coordinator Node Worker Node
DAG %’. Job Assignmel:l! | Assignme Slot
Manager Scheduler {_ e
Result Worker Coord. Result g
7 Manager Manager
Slot 1
Slot 2
Data Locality
Assignment| | Result Slot 3
Slot Manager File Ma'r::;eger M File Relt:rlilgval
Retrieval anager
siot1 || siot2| ... | slotn |—N ¢ Slot k
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» DEWE (Distributed Elastic Workflow Execution)

- The workflow visualization toolkit takes a workflow execution trace file as the
input, and produces a scalable vector graph (SVG) or PDF representing the
resource consumption status during the execution.

User Portal XML/RPC API

\/

Request Handler

A

Y

Trace File Loader

h 4

Trace File Parser

Y

SVG Generator
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» DEWE (Distributed Elastic Workflow Execution)

- The workflow visualization toolkit takes a workflow execution trace file as the
input, and produces a scalable vector graph (SVG) or PDF representing the
resource consumption status during the execution.
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» DEWE vs. Pegasus (well-known workflow execution system)

- Resource consumption of multiple 6.0 degree Montage workflows on Amazon
EC2 c3.8xlarge instance

4000 4 1200
——— DEWE v2 - —— DEWE v2 — DEWE v2
------- Pegasus -g -----=- Pegasus o ---===-Pegasus o
= 3000 83 - 8 900
@ 3 v
E 2 g
L s £ L=
E 2000 : 2 g 600 — Pl
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& 1000 E, =
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2 .E 300 —
o -
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Number of Workflows
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> DEWE evaluation

- Node Performance Index P is used after profiling

w
N=*T

8 P =

W: the number of workflows
N: the number of worker nodes
T: the execution time needed for N workflows

Then, we can estimate the number of worker nodes needed to execute a large
scale workflow ensemble with deadline constraints using the following formula:

w
Px*T

y N =

42
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> DEWE evaluation

- Cluster configurations

Cluster #Nodes |#vCPUs Memory Storage Price
(TB) (TB) (USD/hr)

c3.8xlarge 1280 2.40

r3.8xlarge 25 800 6.10

i2.8xlarge 23 768 5.61

i2.8xlarge B 10 320 2.44
- Workflows

- 50 - 200 6.0 degree Montage workflows

- Deadline constraint: 1 hour

25.6
16.0
147.2
64.0

67.2
70.0
156.7
68.2
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DEWE evaluation

- Results:

- By adopting the pulling approach in our solution system, much of scheduling overhead can be
removed as a majority of tasks in scientific workflows often exhibit homogeneity in their
resource consumption pattern and acquiring a large number of homogeneous public cloud

resources is easily possible.
- 80% speed-up compared to Pegasus

- Cost and deadline compliance can be achieved
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» Resource Efficient Workflow Scheduling

- Lee, Y. C. and Zomaya, A. Y., “Stretch Out and Compact: Workflow Scheduling with Resource
Abundance,” in the Proceedings of the International Symposium on Cluster Cloud and the Grid
(CCGRID), May 13-16, 2013.

- Lee, Y. C., Han, H. and Zomaya, A. Y., “On Resource Efficiency of Workflow Schedules,” in the
Proceedings of the International Conference on Computational Science (ICCS), Jun. 10-12, 2014.

- Jiang, Q., Lee, Y. C. and Zomaya, A. Y., “Executing Large Scale Scientific Workflow Ensembles in
Public Clouds,” in the Proceedings of the International Conference on Parallel Processing (ICPP),
Sep 1-4, 2015.

» High Performance/Throughput Computing Applications

- HosseinyFarahabady, M.R., Lee, Y.C., Han, H., Zomaya, A.Y., “Randomized Approximation
Scheme for Resource Allocation in Hybrid-Cloud Environment,” The Journal of Supercomputing
69(2): 576-592, 2014.

- Farahabady, M. H., Lee, Y. C. and Zomaya, A. Y., “Pareto-Optimal Cloud Bursting,” IEEE
Transactions on Parallel and Distributed Systems , 25(10): 2670-2682, 2014.
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» Why cloud bursting?

- Many organizations already operate their own computing
facilities, called private clouds or data centres

- Multi-cloud model is practical and realistic in many
scenarios:

- Security is a major concern (compared to cloud sourcing)
- Workloads exhibit different characteristics

- Sporadic workload surges occur (a major source of over
provisioning, inetficient resource usage)
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» Tools for cloud bursting

FEUCALYPTUS

n openstack”

OpenNebula.org

The Open Source Solution for Data Center Virtualization

& ganeti

Cluster-based vitualization management software

:5-;;1 Bright Compuling

Cluster Manager
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» Different users have a diverse set of applications possibly with different
objectives, e.g., performance/time, cost, etc.

» Cloud providers offers a number of different services
- E.g., Standard, High-CPU, High-Memory, Compute Cluster, GPU Cluster
» Usage 1s typically charged by the hour

» Cost to performance ratio (cost efficiency) may vary significantly by
scheduling and resource allocation
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» Private system often gets overwhelmed by resource requirement of bag-of-tasks
(BoT) applications
- BoT applications are common in science and engineering

- Monte Carlo simulations

- CycleCloud: more than 10 machine years

BoT job Unable to

handle
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Resource
management
system

Job Analyzer

Scheduling
/Resource
allocation

Dispatcher i
Job Monitor

Resource typ

e?2

Private cloud Public cloud
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» Cloud bursting with BoT applications
- Multi-cloud model
- Public and private cloud resources: (s1,s2 ... sk) and (c1, c2 ... ck)
- BoT application model
- Set of n tasks

- Pi : amount of time required to complete, unknown in
advance

- If task j run on machine i/, it takes Pj /s; to finish.
- Objective function

- User has two conflicting objectives of minimizing cost and
maximizing performance (minimizing makespan)
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» Closer look to objective function

- Pareto optimality effectively captures the trade off between two conflicting objectives
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> PANDA (PAreto Near-optimal Deterministic Approximation)

- A fully polynomial time approximation scheme (FPTAS) with input size n and

approximation factor ¢ GserTUsersgem e o
Utility L (results)
function -~

» Four major steps =t
. (Jobsjpoeij:,5 :'J:srgtiisrscieorl]imit...) r::::?s ctj(s)(iege areo o
- Pre-processing o/ Ehe \®
- Tasks are pre-processed for their lengths to be equalized 7 S“/““ :
H 1 1 1 Task length @ Pareto-optimal points| Schedul -
- Task selection with trimming e | poversor
- Tasks are selected by solving subset sum problem
- Task assignment [ oo |

A

- Each machine gets its workload (optimal #tasks) [ Taskfeesource monitor |
9T35k5 anjif):t?eiautlts @ \Tasks

Public Cloud

Solution refinement J—

- A task currently assigned to a slow resource is moved to
a faster resource such that the time required by
the faster resource does not incur any extra cost
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» Optimal task assignment: integer programming

s.t. E L;x; + Lyx, =n
el

Ly.Lq € 7,20

» Optimal solution for relaxed problem:

n L
T = il 5 Vi e T U{v}
CY; 2: aﬁ
jelu{v}

| a; = LiciPQ/s?, foreel' U {v}
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Algorithm 3: Approximate task assignment

input :n,e,m={P1,Py---P,}, Li,c;, si; Vie DU {v}
output: m;; a partition scheme of m while the sum of
numbers in 7; approximates x; ;

begin

T Set p to a small real number, e.g., 1;

Let n® =370, %L;

» Pre-processing: »—- r*+ FindOptimal(n*, p ,Li, ci, 8;); // Algorithm 1
Sort(z", descending);

L 7'«

fori=1---k+ 1 do

fu — {U)

T forj=1---|7'| do

fj 4— ﬂ!fE?‘Q‘ELiSt(Ej_l:Ej_l — Pj)

_ t; + Trim(f;, g777) // Algorithm 2
> ‘Task selection: »" Remove elements from #; for which the size
is greater than ——

PTEN

< end

Let 7} be the nearest value to =7 in #;;

7 +—set of numbers whose sum is equal to 7} ;
' 7wl -

end

> Refinement Run the refinement process in Algorithm 1.

end —_—
55
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» Experimental evaluation

> We modeled ISOMARP as a real-world BoT application.

- consists of tens of thousands of (CPU-intensive) tasks.

- each task runs for seconds or up to tens of minutes.

- Job sizes in million seconds (Ms): {1 Ms, 5 Ms, 10 Ms, 17 Ms}

» Multi-cloud setting

Cloud Res. Type  Proc. Capacity  Hourly Cost
m1.small [ $0.080
Amazon EC2 ¢l.medium 3 $0.1635
US East (VA) m1.large 4 $0.320
cl.xlarge 20 $0.660

Private 4x10-core Xeon 10 $0.320
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» Pareto frontier reached (1) theoretically, (2) by PANDA, and (3) by a modified List
heuristic

420.&?"* ________________________ (% % List, Alg.

A A PANDA Alg.
® ® Theory 1

B
o
(@]
¢

Total Cost($)

w w

o oy

o o
e
g
»

*»

w

B

o
*

320k é ____________________________ & S é ____________________

Makespan (hour)

L;=5,e=0.1, and job size = 10Ms (on m1.small)
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» Average values of makespan and total cost with respect to different
sizes of BoT applications.

BoT Listy PANDA Optimal

size  ms(h) cost  ms(h) cost  ms(h) cost
1M.s. 2.2 66.0 1.8 58.5 1.5 58.5
5M.s. 42 1184 3.6 117.2 3.3  117.2
10M.s. 55 1535 49 146.0 45 146.0
17M.s. 9.7 241.7 8.2 2156 79 1928

L;=20,&=0.1 on m1.small
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> PESU (Pareto Efficient Scheduling with Uncertainty)

- We devise a dynamic resource allocation solution with a hybrid task running time
estimation technique based on a feedback control mechanism

> Three phases
- Estimation
- estimates the execution time of each task using existing estimation techniques
- Pareto-efficient point generation
- Generates possible Pareto-efficient schedules
- Resource allocation

- Allocates resources for the selected Pareto-efficient point
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» PESU

User / User Agent

BoT job submission (Job Cest | Time User choice based
T ) J— Ul
I_, ser Spec, budget, deadline ... | 8.0h on Uft,c) A

° =" Te i 'R

>

PI‘OPO sed User I/0 Gateway
System @ | original application code A User's feedback A
Pareto reports 6 v Result report @

Code manipulation Pareto-optimal

Scheduler

tool point generator

9 Instrumented code

Estimated running time 9 Update task

running time

Running time estimator @
Tools weig Estimation tool 1 —
Estimation tool 1
Update tools’
Estimationtool T .
weight

@ Tasks dispatching ﬁ) Tasks dispatching

Hybrid >

< Heartbeat 3 4
cloud rr4 @ | and/or results | €D ?r 3 E
(’Prixa’ce cloud Public cloud H’
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> Running time estimation

We use existing estimation techniques (e.g., ATOM, Pin, and Valgrind) in an
iterative fashion

1. Add several breakpoints to each task

2. Assign an accurate weight to each tool by monitoring and comparing the
actual running time of breaking points

Divide the whole time horizon into equal intervals
4. At the beginning of each interval, a monitoring phase happens:

- the actual revealed running time and the estimated running time are compared
to evaluate the accuracy of each estimation tool.
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» We modeled ISOMAP as a real-world BoT application.

Type No. Tasks  Task Length
(BoT size, Task Running Time) =10k x 2T =27 (minitue)
LS (Large, Short) x ~Whbl(1.7,2) x ~U(0,3)

LL (Large, Long) x ~Wbl(1.7,2) x ~N(3.5.3)
LM (Large, Mixture) x ~Wbl(1.7,2) x ~N(1.8,3)

» Multi-cloud setting

62

Cloud Res. Type  Proc. Capacity  Hourly Cost
m1.small I $0.080
Amazon EC2 cl.medium 5 $0.165
US East (VA) m1.large 4 $0.320
cl.xlarge 20 $0.660

Private 4x 10-core Xeon 10 $0.320
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Total Cost (%)
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» Today, with advances in VM techniques and the advent of multi-
/many-core processors, resources are ever abundant

» Computing and data processing needs continuously increase

» Simply expanding resource capacity has resulted in poor resource
utilization, i.e., average data center utilization 1s 10-30% or less

» Adaptive resource management for typical workloads in clouds are
essential

- Workflows: Maximization of resource utilization with min
performance impact

- HPC/HTC apps: Capturing trade-off between cost and performance
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» Cost Efficiency of the Data Centre
- Cost reductions and profit increases (e.g. game theoretic methods)
- Pay-as-you-go pricing, pricing dynamics
> Implications of multi tenancy
- Resource virtualization = Resource contention (migrate VMs?)
- Current SLAs: only availability (need to consider performance?)
> Scheduling and resource allocation as a cost efficient solution (energy
minimization
- Exploitation of application characteristics (e.g. data locality, latency, quality of
service, execution time)
- Explicit consideration of user experience/satisfaction

- Map reducing applications, tuning Map reducible applications.

- Hybrid clouds, cloud bursting for execution time, energy etficiency, pricing, privacy
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