ebay inc

ebay Storage, From Good to Great

Farid Yavari

Sr. Storage Architect - Global Platform & Infrastructure

September 11,2014

International Conference on Parallel Processing - 2014

ebay Journey from Good to Great

2009 to 2011 TURNAROUND

2011 to 2013 POSITIONING FOR THE FUTURE

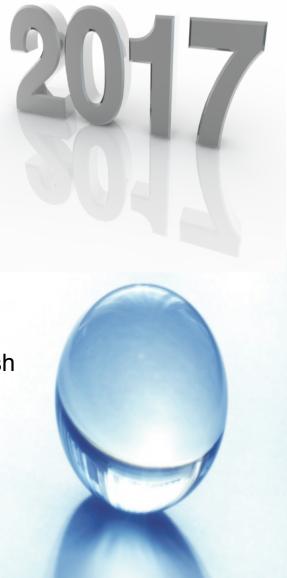
2013 to 2015 CAPITALIZE ON THE OPPORTUNITY

20% Y/Y OLTP Growth 300% Y/Y Analytics Growth

Size of the Managed Infrastructure

- SAN ~ FC OLTP environment 80PB
- NAS ~ 6PB
- Object Store ~1EB by 2015
- Analytics environment ~270PB

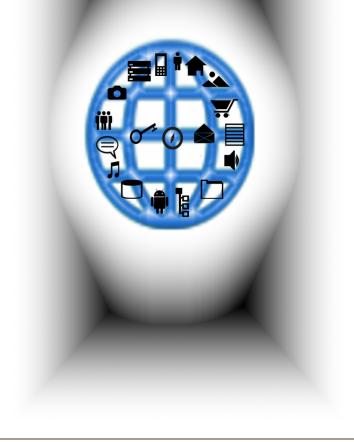
- ~130 enterprise SAN/NAS/FLASH storage arrays in 3 major DCs
- •~1.4mil peak hour IOPS in SAN environment
- Thousands of servers with external storage


Storage Ecosystems

OLTP	Cloud (C3)	Analytics / Big Data	NoSQL
 FC/NFS → ISCSI, Object Store Centralized Storage SQL transactional > 16TB/U → 150TB/RU ~80PB 	 ISCSI, Block + Object Store Local attached → external Storage KVM Openstack Cinder (5PB) Swift >20TB/U → 120TB/U 	 HDFS → Object Store Local Attached → Disaggregate compute (Map Reducers) 128TB/U → 256TB/U Uneven tiering on Flash Swift object store ~270PB → ~500PB 	 ISCI Block MongoDB Local Attached → external storage Cinder (10PB) Cassandra Couch Base Supports mobile apps

2017 Vision

- Flash Everywhere
- Memory Class Storage emerging
- Storage Density Scales to 1Pb/RU
- Storage networking moves to Ethernet
- Software Defined Everything
- Hyperscale OpenStack
- Exabytes of Analytics
- 2 Flash Tiers: Performance Flash and Big Data Flash



Foundation of an Elastic Infrastructure

Definition: An infrastructure that can spawn, destroy, grow, shrink and move processes dynamically and efficiently within and across data centers.

- Automated Control Plane
- Resource Pool
 - Compute
 - Memory
 - Storage
 - Low latency, High bandwidth interconnect
- Traffic Management
 - PCI Compliance
 - Security
 - QoS

Key Technologies to Enable an Elastic Infrastructure

- Control Plane
 - Virtualization / Containers/ Hardware
 - Orchestration of infrastructure resources
 - Normalization of resources
- Resource Pool
 - High Speed Networking (10Gbe, 40Gbe, 100Gbe, beyond)
 - RDMA enabled (routable layer3)
 - Lossless flow control
 - Memory Class Storage
 - New Media beyond Virtical Nand
- Traffic
 - Virtual Lan
 - Access Control

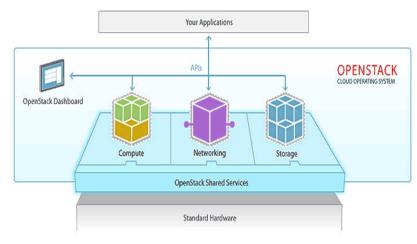


Image Credit: Open Stack

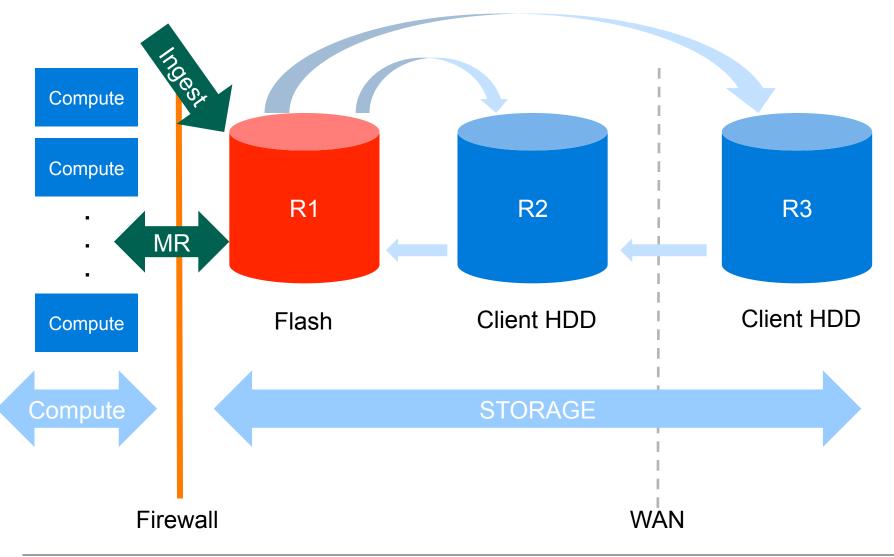
Key Initiatives to Enable an Elastic Infrastructure

- Separation of Storage and Compute
 - Hadoop use case
- Software defined storage, software defined network
- Cloud, SLA, OLA based services
 - -Standardization
 - -Automation
 - -Show/Chargeback
 - -Self Service

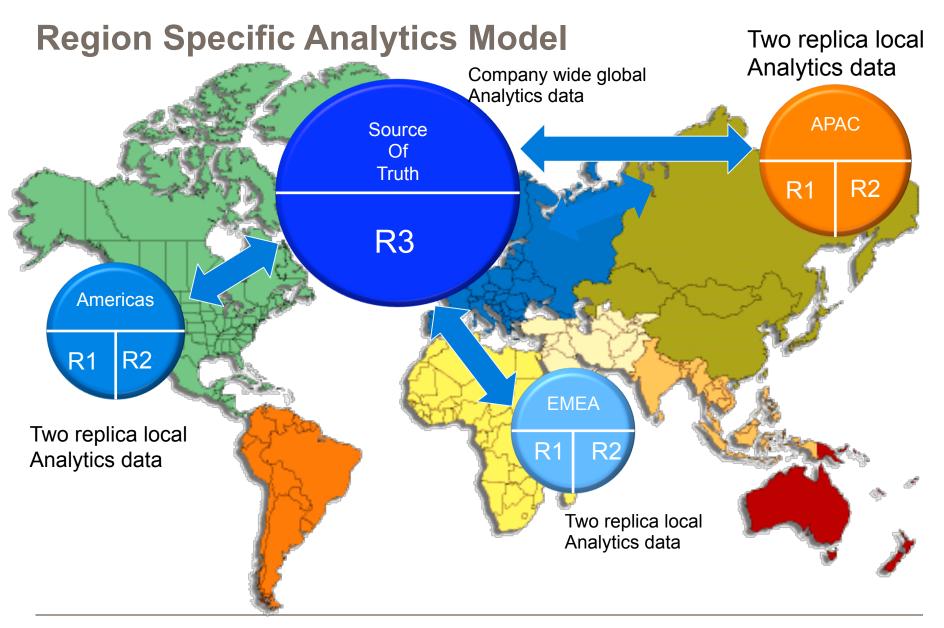
Shifting Paradigm of Storage

Tech	Bus	BW	Latency	Power	2014	2 yr	3 yr	4 yr
HDD (LFF)	SAS/ SATA	600MB/ s 1.2GB/s	3 - 12ms	6-15 W	5-6TB	7-8TB	10TB	?
SSD (SFF)	SAS/ SATA	600MB/s 1.2GB/s	0.3 - 0.8ms	2-12 W	4-8TB	8-16TB	24TB	36-48TB
Flash	PCIE	2GB/s 3GB/s	2µs - 150µs	25 W	1-16TB	16TB+		
Storage Class Memory	PCIE	2+GB/s	1µs - 40µs 100's ns			8-24TB	24TB+	

Information based on Currently available products on the market and industry roadmap information


ebay inc^{*}

Big Data Flash


- Design Criteria
 - Merely beat disk in IOPs per TB
 - Heavy read workload, write seldom
 - \$.30/Gb Target
 - 30 day power off retention and < 200ms power on response</p>
 - 6Gb/s throughput
 - 8PB in a rack
- Hadoop Requirements
 - Tiered replicas
 - Abstract storage: Data Nodes separated from Map Reducers
 - Line Rate Networking

Hadoop Disaggregated Storage Model

ebay inc

Storage Class Memory

ReRAM/Memrister

- High Storage Density
- Low Power
- Memory Class latency (~100ns)
- Higher Endurance
- Cost < Flash
- Standard CMOS
- Long Scalability Roadmap
- Excellent Retention

Phase Change Memory (PCM)

- Moderate Density
- High Power
- Higher write latency
- Limited Endurance
- Cost < DRAM
- Non-CMOS
- Unknown scalability
- Write Disturbance

Spintronics (STT-RAM)

- Low Density
- High Power
- Lower Latency
- Higher Endurance
- Cost > DRAM
- Non-CMOS
- Limited scalability
- Good Retention

The Challenges

- Storage growth in areas not traditionally designed for solid state such as Big Data will cause scaling challenges. How do we realize the benefits of flash while controlling the costs.
- 2. Storage Systems not understanding Flash
- 3. Software not understanding Flash
- 4. Capex Gap between technologies can make financial acceptance difficult.
- 5. Aggregated resources cause greater utilization imbalance
- 6. When will Flash need to pass the baton to Storage Class Memory.

The Opportunities

- 1. Flash designed with Big Data in mind will enable this technology to address the scaling and cost issues.
- 2. Scalable Software Defined Storage multi-rack ecosystems are well suited to data placement on flash vs. RAID. Tiering and metadata enhancements will introduce flash in more areas.
- 3. Gradually, applications, kernels and filesystems are beginning to treat flash as flash.
- 4. The Capex Gap can be met with Opex and comparative advantages. Quantify it! Additionally, Capex gap will close.
- 5. Networking advances will enable low cost storage disaggregation. (RDMA/IP, 40Gbps+, PFC)
- 6. Work is being done on optimizing for non-volatile memory but this will be an evolution. Doing this will allow for low cost memory scaling.

