
The Coming Era of  
Adaptive Control Systems  

in HPC	

Laxmikant	 (Sanjay)	 Kale	
h3p://charm.cs.illinois.edu	

Just as I was preparing this
•  I read an abstract of a talk yesterday:
–  “Supercomputing has had two "easy" decades”
•  where most of the increased performance of supercomputers

came from the increase in uniprocessor performance

•  I thought we were having fun these decades
–  But not because it was easy

•  But then, I trust Marc Snir (who said this)..
–  And he did put those quotes
–  So, it means its going to get even harder

•  We all know why: sophisticated apps, complex machines
–  More fun, and more employment!

10/3/13 ICPP2013 2

What control systems am I talking about?

•  Runtime Systems?
•  Java runtime:
–  JVM + Java class library
–  Implements JAVA API

•  MPI runtime:
–  Implements MPI standard API
–  Mostly mechanisms

•  I want to focus on runtimes that are “smart”
–  i.e. include strategies in addition to mechanisms
–  Many mechanisms to enable adaptive strategies

10/3/13 ICPP2013 3

10/3/13 ICPP2013 4

Why?

And what kind of adaptive
runtime system I have in
mind?

Let us take a detour

10/3/13 ICPP2013 5

Source: Wikipedia

Governors
•  Around 1788 AD, James Watt and

Mathew Boulton solved a problem
with their steam engine
–  They added a cruise control… well,

RPM control
–  How to make the motor spin at the

same constant speed
–  If it spins faster, the large masses

move outwards
–  This moves a throttle valve so less

steam is allowed in to push the prime
mover

10/3/13 ICPP2013 6

Source: wikipedia

Feedback Control Systems Theory
•  This was interesting:
–  You let the system “misbehave”, and use that

misbehavior to correct it..
–  Of course, there is a time-lag here
–  Later Maxwell wrote a paper about this, giving

impetus to the area of “control theory”

10/3/13 ICPP2013 7

Source: Wikipedia

Control theory
•  The control theory was concerned with

stability, and related issues
–  Fixed delay makes for highly analyzable system

with good math demonstration
•  We will just take the basic diagram and two

related notions:
–  Controllability
–  Observability

10/3/13 ICPP2013 8

A modified system diagram

10/3/13 ICPP2013 9

System

controller

Output variables

Observable/
Actionable
variables

Control
variables

Metrics
that we

care about

10/3/13 ICPP2013 10

Archimedes is supposed to have said, of the lever:
Give me a place to stand on,

and I will move the Earth

Source: Wikipedia

Need to have the lever
•  Observability:
–  If we can’t observe it, can’t act on it

•  Controllability:
–  If no appropriate control variable is available, we

can’t control the system
•  (bending the definition a bit)

•  So: an effective control system needs to
have a rich set of observable and
controllable variables

10/3/13 ICPP2013 11

A modified system diagram

10/3/13 ICPP2013 12

System

controller

Output variables

Observable/
Actionable
variables Control

variables

some of these are
Metrics

that we care about

These include one or more:
•  Objective functions (minimize, maximize, optimize)
•  Constraints: “must be less than”, ..

Feedback Control Systems in HPC?
•  Let us consider two “systems”
–  And examine them for opportunities for

feedback control
•  A parallel “job”
–  A single application running in some partition

•  A parallel machine
–  Running multiple jobs from a queue

10/3/13 ICPP2013 13

A Single Job
•  System output variables that we care about:
–  (Other than the job’s science output)
–  Execution time, energy, power, memory usage, ..
–  First two are objective functions
–  Next two are (typically) constraints
–  We will talk about other variables as well, later

•  What are the observables?
–  Maybe message sizes, rates? Communication

graphs?
•  What are the control variables?
–  Very few. Maybe MPI buffer size? Bigpages?

10/3/13 ICPP2013 14

Control System for a single job?
•  Hard to do, mainly because of the paucity of

control variables
•  This was a problem with “Autopilot”, Dan

Reed’s otherwise exemplary research
project
–  Sensors, actuators and controllers could be

defined, but the underlying system did not
present opportunities

•  We need to “open up” the single job to
expose more controllable knobs

10/3/13 ICPP2013 15

Alternatives
•  Each job has its own ARTS control system, for

sure
•  But should this be:

–  Specially written for that application?
–  A common code base?
–  A framework or DSL that includes an ARTS?

•  This is an open question, I think..
–  But it must be capable of interacting with the

machine-level control system
•  My opinion:

–  Common RTS, but specializable for each application

10/3/13 ICPP2013 16

The Whole Parallel Machine
•  Consists of nodes, job scheduler, resource

allocator, job queue, ..
•  Output variables:
–  Throughput, energy bill, energy per unit of work,

power, availability, reliability, ..
•  Again, very little control
–  About the only decision we make is which job to

run next, and which nodes to give to it..
–  Maybe a few more ideas now, in the context of

energy:
•  How many nodes to leave idle
•  What power limit to assign to a job

10/3/13 ICPP2013 17

10/3/13 ICPP2013 18

The Big Question/s:

How to add more control variables?
How to add more observables?

And then, how to build a powerful
adaptive control system?

It so happens J
•  My group’s research over the past 15-20

years can be thought of as a quest to add
more observables and control variables
–  Programming models, languages ,libraries,

including:
•  Charm++, AMPI, Charisma, MSA, Charj,

•  Now, I’d like to consolidate the experience
and knowledge gained, and express it in a
new abstract programming model

10/3/13 ICPP2013 19

XMAPP
•  XMAPP is an abstract programming model:

–  That means it characterizes a set of prog. models
•  For a programming model to belong to this set, it

must support
–  X: Overdecomposition

•  (as in: 8X objects than cores)
–  M: Migratability
–  A: Asynchrony

•  and Adaptivity, as a consequence of all the above
•  So, XMAPP stands for:

–  Overdecomposition-based Migratibility, Asynchrony and
Adaptivity in Parallel Programming

10/3/13 ICPP2013 20

Members of XMAPP-class
•  The programming models in XMAPP, or exhibit some

features of it
–  Charm++
–  Adaptive MPI
–  KAAPI
–  ProActive
–  FG-MPI (if it adds migration)
–  HPX (once it embraces migratability)
–  ParSEC
–  CnC
–  MSA (multi-phase Shared arrays)
–  Charisma
–  Charj
–  DRMS (old abstraction from IBM research..)
–  Chapel: may be a higher level model
–  X10: has asynchrony, but not migratable units
–  Tascel

10/3/13 ICPP2013 21

Also, general work on adaptivity
is relevant: Trilinos, Hank
Hoffman/UIC, …

Over-decomposition
•  Let the programmer decompose a computation into

entities
–  Work units, data-units, composites
–  Into coarse-grained set of objects
–  Independent of number of processors

•  Let the entities communicate with each other without
reference to processors
–  So each entity is like a virtual processor by itself

•  Let an intelligent runtime system assign these
entities to processors
–  RTS can change this assignment during execution

•  This empowers the control system
–  A large number of observables
–  Many control variables created

10/3/13 ICPP2013 22

Grainsize
•  It is important to understand what I mean

by coarse-grained entities
–  You don’t write sequential programs that some

system will auto-decompose
–  You don’t write programs when there is one

object for each float
–  You consciously choose a grainsize, BUT choose

it independent of the number of processors
•  Or parameterize it, so you can tune later

10/3/13 ICPP2013 23

10/3/13 ICPP2013 24

Crack Propagation

Decomposition into 16 chunks (left) and 128 chunks, 8 for
each PE (right). The middle area contains cohesive elements.
Both decompositions obtained using Metis. Pictures: S.
Breitenfeld, and P. Geubelle

This is 2D, circa 2002…
but shows over-decomposition for unstructured meshes..

Grainsize example: NAMD
•  High Performing examples: (objects are the

work-data units in Charm++)
•  On Blue Waters, 100M atom simulation,
–  128K cores (4K nodes), 5,510,202 objects

•  Edison, Apoa1(92K atoms)
–  4K cores , 33124 objects

•  Hopper, STMV, 1M atoms,
–  15,360 cores, 430,612 objects

10/3/13 ICPP2013 25

Grainsize: Weather Forecasting in BRAMS

10/3/13 ICPP2013 26

•  Brams: Brazillian weather code (based on RAMS)
•  AMPI version (Eduardo Rodrigues, with Mendes , J. Panetta, ..)

Instead of using 64 work units on 64 cores, used 1024 on 64

10/3/13 ICPP2013 27

Working definition of grainsize :
amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

Grainsize in a common setting

10/3/13 ICPP2013 28

 1

 2

 4

128M32M8M2M512K64K16K4K

tim
es

te
p(

se
c)

number of points per chare

Jacobi3D running on JYC using 64 cores on 2 nodes

2048x2048x2048 (total problem size)

2 MB/chare,
256 objects per core

Impact on communication

•  Current use of communication network:
–  Compute-communicate cycles in typical MPI apps
–  So, the network is used for a fraction of time,
–  and is on the critical path

•  So, current communication networks are over-
engineered for by necessity

10/3/13 ICPP2013 29

P1

P2

BSP based application

Impact on communication
•  With overdecomposition
–  Communication is spread over an iteration
–  Also, adaptive overlap of communication and

computation

10/3/13 ICPP2013 30

P1

P2

Overdecomposition enables overlap

Object-based over-decomposition: Charm++

10/3/13 ICPP2013 31

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors

10/3/13 ICPP2013 32

Scheduler Scheduler

Processor 1 Processor 2

Message Queue Message Queue

A[..].foo(…)

Note the control points created
•  Scheduling (sequencing) of multiple method

invocations waiting in scheduler’s queue
•  Observed variables: execution time, object

communication graph (who talks to whom)
•  Migration of objects
–  System can move them to different processors at

will, because..
•  This is already very rich…
–  What can we do with that??

10/3/13 ICPP2013 33

Optimizations Enabled/Enhanced by
These New Control Variables

•  Communication optimization
•  Load balancing
•  Meta-balancer
•  Heterogeneous Load balancing
•  Power/temperature/energy optimizations
•  Resilience
•  Shrink/Expand sets of nodes
•  Application reconfiguration to add control

points
•  Adapting to memory capacity

10/3/13 ICPP2013 34

Principle of Persistence
•  Once the computation is expressed in terms of

its natural (migratable) objects
•  Computational loads and communication

patterns tend to persist, even in dynamic
computations

•  So, recent past is a good predictor of near
future

10/3/13 ICPP2013 35

In spite of increase in irregularity and
adaptivity, this principle still applies
at exascale, and is our main friend.

Measurement-based Load Balancing

10/3/13 ICPP2013 36

Regular
Timesteps

Instrumented
Timesteps

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

10/3/13 ICPP2013 37

XMAPP ideas and features
have been demonstrated in

full-scale production
Charm++ applications

NAMD: Biomolecular simulations

•  Collaboration with K.
Schulten

•  With over 45,000
registered users

•  Scaled to most top US
supercomputers

•  In production use on
supercomputers and
clusters and desktops

•  Gordon Bell award in
2002

10/3/13 ICPP2013 38

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

ChaNGa: Parallel Gravity
•  Collaborative project

(NSF)
–  with Tom Quinn, Univ. of

Washington
•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better

aspect ratios, so you
“open” up fewer nodes

–  But is not used because it
leads to bad load balance

–  Assumption: one-to-one
map between sub-trees
and PEs

–  Binary trees are considered
better load balanced

10/3/13 ICPP2013 39

With Charm++: use Oct-
Tree, and let Charm++ map
subtrees to processors

Evolution of Universe and
Galaxy Formation

10/3/13 ICPP2013 40

Spread of Infection:
Agent-based Simulation

EpiSimdemics
Keith Bisset, Madhav Marathe

10/3/13 ICPP2013 41

An upcoming book
Surveys seven
major applications
developed using
Charm++

Saving Cooling Energy
•  Easy: increase A/C setting

–  But: some cores may get too hot
•  So, reduce frequency if temperature is high

–  Independently for each core or chip
•  But, this creates a load imbalance!
•  No problem, we can handle that

–  Migrate objects away from the slowed-down procs
–  Balance load using an existing strategy
–  Strategies take speed of processors into account

•  Implemented in experimental version
–  SC 2011 paper, IEEE TC paper

•  Several new power/energy-related strategies
–  PASA ‘12: Exploiting differential sensitivities of code

segments to frequency change

10/3/13 ICPP2013 42

Fault Tolerance in Charm++/AMPI

•  Four Approaches:
–  Disk-based checkpoint/restart
–  In-memory double checkpoint/restart
–  Proactive object migration
–  Message-logging with parallel restart: scalable fault

tolerance
•  Common Features:

–  Leverages object-migration capabilities
–  Based on dynamic runtime capabilities

•  Several new results in the last year:
–  FTXS 2012: scalability of in-mem scheme
–  Hiding checkpoint overhead .. with semi-blocking..
–  Energy efficiency of FT protocols : best paper SBAC-PAD

10/3/13 ICPP2013 43

Ships in Charm++
distribution, for years

10/3/13 ICPP2013 44

Another idea for
increasing

controllable variables:

Reconfigurable
Applications

App based Creation of Control Points
•  A richer set of control points can be generated

if we enlist help from the application
–  Or its DSL runtime, or compiler

•  The idea is:
–  Application exposes some control knobs
–  Describes the effects of the knobs
–  The RTS observes performance variables, identifies

the knobs that will help the most, and turns them in
the right direction

•  Examples: granularity, yield frequencies in
inner loops, CPU-Accelerator balance

10/3/13 ICPP2013 45

Load Balancing Framework
•  Charm++ load balancing framework is an

example of “customizable” RTS
•  Which strategy to use, and how often to call

it, can be decided for each application
separately

•  But if the programmer exposes one more
control point, we can do more:
–  Control point: iteration boundary
–  User makes a call each iteration saying they can

migrate at that point
–  Let us see what we can do: metabalancer

10/3/13 ICPP2013 46

Meta-Balancer

•  Automating load balancing related
decision making

•  Monitors the application continuously
–  Asynchronous collection of minimum statistics

•  Identifies when to invoke load balancing
for optimal performance based on
–  Predicted load behavior and guiding principles
–  Performance in recent past

10/3/13 ICPP2013 47

Fractography: Without LB

10/3/13 ICPP2013 48

Meta-Balancer on Fractography

•  Identifies the need for frequent load balancing in the beginning
•  Frequency of load balancing decreases as load becomes balanced
•  Increases overall processor utilization and gives gain of 31%

10/3/13 ICPP2013 49

Shrink/Expand job
•  If a job is told to reduce the number of

nodes it is using..
•  It can do so now by migrating objects..
•  Same with expanding the set of nodes used
•  Empowered by migratability

10/3/13 ICPP2013 50

10/3/13 ICPP2013 51

Inefficient Utilization within a cluster

Job A

Allocate A !

Job B

8 processors

B Queued Conflict ! 16 Processor
system

Job A

Job B

Current Job Schedulers can lead to low system utilization !

10/3/13 ICPP2013 52

Adaptive Job Scheduler
•  Scheduler can take advantage of the

adaptivity of XMAPP jobs
•  Improve system utilization and response time
•  Scheduling decisions

–  Shrink existing jobs when a new job arrives
–  Expand jobs to use all processors when a job finishes

•  Processor map sent to the job
–  Bit vector specifying which processors a job is allowed to

use
•  00011100 (use 3 4 and 5!)

•  Handles regular (non-adaptive) jobs

10/3/13 ICPP2013 53

Two Adaptive Jobs

Job A

A Expands !

Job B

Min_pe = 8
Max_pe= 16

Shrink A Allocate B ! 16 Processor
system

Job A

Job B

B Finishes
Allocate A !

10/3/13 ICPP2013 54

Whole Machine RTS

Per job
RTS

Job2

Per job
RTS

Job1

Per job
RTS

Jobk

Rich Interaction desirable: currently there is very little

Whole machine runtime
•  Job schedulers and resource allocators:
–  Accept more flexible QoS specifications from jobs

•  Creating more control variables
–  “moldable” specification:

•  This job needs between 3000-5000 nodes
•  Memory requirements..
•  Topology sensitivity, speedup profiles,…

–  Malleable:
•  this job can be told to shrink/expand after it has started

10/3/13 ICPP2013 55

Whole machine control
•  Monitor failures, and act in job-specific

ways
•  Global power constraints:
–  Inform, negotiate with and constrain jobs

•  Thermal management
•  I/O system and job I/O interactions
•  Shrink and Expand jobs as needed to

optimize multiple metrics

10/3/13 ICPP2013 56

Novel, Revolutionary and Old?
•  These concepts have been around for a

while
–  E.g. Charm++ even in the present form is 13-15

years old
•  An analogy might help

10/3/13 ICPP2013 57

Dinosaurs, mammals and primates
•  When the asteroid created a shock to the

ecosystem
–  For us, multiple asteroids together:

•  End of frequency scaling,
•  Complex heterogeneous hardware,
•  Thermal, power, energy issues,
•  Component failures
•  increasingly complex apps

–  Dinosaurs (well.. MPI) and mammals (XMAPP) both
existed
•  But dinosaurs died out, mammals survived, and evolved

further
•  The premium on “smart” rather than “big” in the

ecosystem eventually saw the emergence of humans
–  Well.. Bending the truth a bit for the sake of analogy

•  Well, dinosaurs survived as birds… maybe MPI 5?

10/3/13 ICPP2013 58

XMAPP models: adoption
•  It is challenging to get the community to

adopt a new programming model
–  And here we are talking about a whole class of

them!
•  It helps
–  To get a few from-scratch success stories
–  Some apps may get “refactored” to use the new

model (Episimdemics)
•  But large-scale adoption will be helped if we

can support true “interoperability”

10/3/13 ICPP2013 59

Interoperation of Parallel Languages
•  Implement a library in

the language that suits
it the most, and use
them together!

•  MPI + UPC, MPI +
OpenMP + Charm++

10/3/13 ROSS 2013 60

Language1 Language 2

P(1)

(a) Time Division (b) Space Division (c) Hybrid

Time

P(2)

P(n-1)

P(n)

.

.

int main(int argc, char **argv) {
 // Initialization
 mpi_module1(data);
}

mpi_module1(data) {
 // do work
 charm_module1(data);
}

charm_module1(data) {
 // do work
}

charm_module2(data) {
 // do work
 mpi_module2(data);
}

EXIT

1

2 3

4

5

mpi_module2(data) { }

Is Interoperation Feasible in
Production Applications?

Application Library Productivity Performance

CHARM in MPI
(on Chombo)

HistSort in
Charm++

195 lines
removed

48x speed
up in Sorting

EpiSimdemics MPI IO Write to single
file

256x faster
input

NAMD FFTW 280 lines less Similar
performance

Charm++’s
Load Balancing

ParMETIS Parallel graph
partitioning

Faster
applications

Conclusions
•  We need a much richer control system

–  For each parallel job
–  For parallel machine as a whole

•  Current status: paucity of control variables
•  Programming models can help create new

observable and controllable variables
•  As far as I can see,

–  XMAPP class programming models,
with overdecomposition and migratability, and
the resultant asynchrony and adaptivity
are the main vehicle for this..
–  Do you see other ideas?

10/3/13 ICPP2013 62

Conclusion
•  HPC community suggestions:
–  Develop new XMAPP models

•  But: make sure you develop it in the context of at least
two reasonable-size applications

–  Collaborate and compete on runtime adaptation
strategies, based on the common assumptions
of XMAPP models
•  Possibly develop standards for mature pieces

10/3/13 ICPP2013 63

More info on Charm++:
http://charm.cs.illinois.edu

See you at Charm++ BOF at
SC: Tuesday noon I am looking for a postdoc

and/or a research programmer

