Many Cores, One Thread:

The Search for Non-
traditional Parallelism

Dean Tullsen
University of California, San Diego



ted

Wi

‘rl_ll[[rl-[.'.ll
'[['l[[[[[_

[ r[:.llrlnrl.]r:l..'url
'rlrlt.lrl.l.rl.l..

Dean Tullsen @

There are some domains that

11mi

feature nearly unl

parallelism.

.m_l.l.l.lrlr...lr

At N s s M s i |
.li[rl.l.l![

[Illlllr-ll—

® |CPP Keynote 2010



Others, not so much...
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Moore’s Law and Single-
Thread Performance

* In the 35+ years since the first microprocessor,
Moore’s law has been applied almost exclusively to
Increasing single-thread performance.

« Today, Moore’s law is no longer being applied to
single-CPU performance.

e Instead, additional transistors are being applied to
Increasing the number of on-chip contexts
(multithreading and multi-core).

 The result is that our ability to maintain the
performance corollary to Moore’s law is critically
dependent on our abllity to create thread-level
parallelism.
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Amdahl’s Law and
Massive Parallelism
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The new economy:

Threads are free!
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The big question is:

« How do we use the available hardware parallelism
to add value to a system when thread-level
parallelism is low?
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The Parallelism Crisis

 Defined - The inevitable gap between the
parallelism the hardware can exploit and the
parallelism the software exhibits.

 We will attack the problem via traditional methods
(parallelizing compillers, parallel languages and
tools, etc.) and non-traditional methods.
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Non-traditional
Parallelism

e Parallelism — Use multiple contexts to achieve better
performance than possible on a single context.

o Traditional Parallelism — We use extra
threads/processors to offload computation.
Threads divide up the execution stream.

 Non-traditional parallelism — Extra contexts are used
to speed up computation without necessarily off-

loading any of the original computation

o Primary advantage - nearly any code, no matter how inherently
serial, can benefit from parallelization.

o Another advantage - threads can be added or subtracted
without significant disruption.
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Traditional Parallelism

Corea Core 2 Core 3 Core 4
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Non-Traditional Parallelism I

Core1 Core 2 Core3 Core 4
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Traditional = Non-Traditional
Parallelism Parallelism
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Two Techniques for Non-
Traditional Parallelism

 Helper Threads
 Migration as a first-class compiler primitive

 (not going to talk about speculative multithreading,
aka thread level speculation)
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S0 What’s going on in all
those extra threads?

 Precomputing memory addresses (or branch
directions) and moving data closer to the processor.

 Generating and optimizing code

« Aggregating cache space
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Four Approaches to Non-
Traditional Parallelism

 Helper thread prefetching
 Event-Driven Simultaneous Compilation
o Software Data Spreading via thread migration

 (removed)
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Helper Threads precompute
architectural state that may be
used by the main thread

« Chappell 1999, Zilles 2001, Collins 2001, Luk 2001

e Speculative Precomputation uses slices derived
from the main thread to precalculate load
addresses and prefetch data into shared cache.

 Branch directions also possible but require
signhificant additional support.
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Speculative Precomputation
Exploits Shared Caches

e Easiest and most useful using multitheading
contexts.

« Cannot prefetch into private caches of multicores
w/0 multithreading???

4-core (8 SMT context) Nehalem
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Speculative Precomputation
Exploits Shared Caches

o Easiest and most useful using multithreading
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Speculative Precomputation
— Motivation

e Achieve

most of the
gains of
eliminating
all load
delays, by
only
eliminating
the delays of
10 static
loads

32.64
27.90

W Perfect Memory
W Perfect Delinquent Loads (10)

art equake gzip mcf health mst
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Therefore...

* [tis worthwhile devoting very heavyweight
mechanisms to those static loads — even an entire

thread context.
e And remember, threads are free.
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Speculative

Precomputation
Trigger instruction w‘vn thread

Prefetch

Memory latency

Delinquent load Works best when we can
create a looping thread,
amortizing the cost of
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Advantages over Traditional
(HW or SW) Pretetching

« Because SP uses actual program code, can
precompute addresses that fit no predictable
pattern.

« Because SP runs in a separate thread, it can
iInterfere with the main thread much less than
software prefetching. When it isn’t working, it can
be killed.

« Because itis decoupled from the main thread, the
prefetcher is not constrained by the speed of the
main thread.
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SP Performance
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Generating Helper
Threads

e This technique relies heavily on our abillity to
generate p-slices (helper thread code)

e This Is non-trivial, since we are typically targeting
Iregular code (code that the hw and sw prefetcher
misses)

 We typically want to “distill” the p-slice from the
original code, retaining the original access patterns.
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Generating Helper
Threads

By hand (most of the early work)
e Via static compiler [KIim and Yeung]

 Via hardware (dynamic speculative
precomputation [Collins, et al.])

« Dynamically via helper threads!!! (stay tuned)
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Four Approaches to Non-

Traditional Parallelism

 Helper thread prefetching
 Event-Driven Simultaneous Compilation
o Software Data Spreading via thread migration

 (removed)
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Event-Driven Optimization

Thread1 Thread 2 Thread 3 Thread 4

oooooooooooooooooooooooooooo



Event-Driven
Optimization: the big idea

e Use “helper threads” to

. o . Trident
recompile/optimize the main thread
(in a code cache). SRS
o Optimization is triggered by interesting
events that are identified in hardware \
(event-driven). \

* In this way, the application binary
becomes more and more specialized
to the runtime behavior of the thread.

Main  Optimization
thread threads
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A new model of
Compilation

 Execution and compiler optimization occur in
parallel
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Advantages of Event-
Driven Optimization

 Low overhead profiling of runtime behavior (never
need to stop profiling)

 Low overhead optimization by exploiting alternate
hardware context/core.

 Quick response to the program’s changing
behavior

 Enables aggressive optimizations
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What kind of events can
you trigger on?

 Frequent branches

e Poorly performing branches

« Highly biased branches (easily optimized)
 Frequent loads

* Frequently missed loads

e Loads with high value locality

 Regions of low ILP
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What kind of
optimizations can you do?

 Well, just about anything. But here are some things
we have demonstrated:

o Dynamic Value Specialization
o Inline software prefetching

o0 Helper thread prefetching
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Why dynamic value
specialization?

 Value specialization

o Make a special version of the code corresponding to likely live-in
values

« Advantages over hardware value prediction

o Value predictions are made in the background and less
frequently

No limits on how many predictions can be made
Allow more sophisticated prediction techniques
Propagate predicted values along the trace

Trigger other optimizations such as strength reduction

O O O O
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Why dynamic value
specialization?

 Value specialization
o0 Make a special version of the code corresponding to likely live-in
values
 Advantages over software value specialization

o Can adapt to semi-invariant runtime values (eg, values that
change, but slowly)

o Adapts to actual dynamic runtime values.
o Detects optimizations that are no longer working.
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recovery code

Dynamic value
specialization

e Specialize on
o Semi-invariant “constants”
o Strided values (details omitted)

 Verify dynamically in

m  Perform the original load into
a scratch register

s Move predicted value into the
load destination

m  Check the predicted value,
branch to recovery if not equal

m Perform constant propagation
and strength reduction

LDQ 0(R2) & R1
/
/
/
/
ADD R6, R4 > R3

MUL R1, Rf:) R2

LDQ
MOV
BNE
ADD
MOV

0(R2) >
09 R1

R1, R3, recovery
R6, R4 = R3

0=>R2

\
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Performance of dynamic value

specialization

” O H/W value prediction 169%  238%
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What kind of
optimizations can you do?

 Well, just about anything. But here are some things
we have demonstrated.

o Dynamic Value Specialization
o Inline software prefetching

o Helper thread prefetching

® |CPP Keynote 2010 Dean Tullsen @



Software prefetching

Limitations of existing static prefetching techniques:
e Address / aliasing resolution

o Timeliness

 Hard to identify delinquent loads

e Variation due to data input or architecture
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Why prefetch distance is

® |CPP Keynote 2010

so hard

(iter 1)
load A
load B
load C

(iter 2)
load A
load B
load C

(iter 3)
load A
load B
load C

(iter 4)
load A
load B
load C

(iter 5)

load A +

load B
load C
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How event-driven compilation
solves the problem

 Re-optimization is extremely cheap, and still triggered when
loads miss (ie, prefetch distance is not right).

* This makes it easy, then, to dynamically discover the right
prefetch distance, and rediscover when conditions change

 Thatis, we simply use a trial-and-error approach to discover a
value (the correct prefetch distance) that is nearly impossible
to precompute statically.
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Performance of self-repairing
prefetching

 Baseline: H/W stride-based prefetching stream buffers

o Self-repairing based prefetching achieves 23%
speedup

 12% better than software prefetching without repairing

80% @ S/W prefetching - basic
m S/W prefetching - w hole object
0O S/W prefetching w ith self-repairing

60% -

40%
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What kind of
optimizations can you do?

 Well, just about anything. But here are some things
we have demonstrated.

o Dynamic Value Specialization
o Inline software prefetching

o Helper thread prefetching
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Remember —

Speculative Precomputation

Trigger instruction wn thies

Generating Helper Threads
*By hand (most of the early work) Prefetch
*Via static compiler [Kim, Yeung]
*Via hardware (dynamic
speculative precomputation
[Collins, et al.])

Memory latency
*Dynamically via helper threads

Delinquent load
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Helper thread prefetching

Can potentially be more effective than inline
prefetching.

However, more complex, with more things to get
right/wrong

o How far ahead to trigger

o0 When to terminate (end of loop)

o When to terminate (prefetching off-track or ineffective)

o Synchronization between helper and main thread — degree of decoupling

These vary not just with load latencies, but also
control flow, etc.

Again, our abllity to continuously adapt is key.
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Event-driven
simultaneous compilation

e |s a powerful way to use hardware parallelism to
accelerate performance

« Works on completely serial code

* Incurs almost no runtime overhead (in performance
or power)
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Four Approaches to Non-

Traditional Parallelism

 Helper thread prefetching
e Event-Driven Simultaneous Optimization
o Software Data Spreading via thread migration

 (removed)
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Memory Intensive Single Thread Execution

[ Interconnect

fori=1 to 100 {
for j=1to 1000 Loopl
alj] = alj-1] + alj+1]

for j=1to 2000 Loop2
bljl = blj-1] + b[j+1]

Executing
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Memory Intensive Single Thread Execution

[ Interconnect

fori=1 to 100 {
forj=1t0 1000 Loopl /
alj] = alj-1] + alj+1]

for j=1to 2000 Loop2
bljl = blj-1] + b[j+1]

Executing

e One Cache is not large enough to hold both ‘a’
and ‘b’

o Capacity misses
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Can We Exploit Idle Resources ?

Interconnect
fori=1 to 100 { -
forj=1t0 1000 Loopl /
alj] = alj-1] + a[j+1] i i i i

for j=1to 2000 Loop2
bljl = blj-1] + b[j+1]

Executing

 Parallel execution in hardware is not always possible
0 Lack of parallelism
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Can We Exploit Idle Resources ?

Interconnect
\ J Idle
f01’ 1=1to 100 { caches
/’ B I e e R

for j=1to 1000 Loopl
alj] = alj-1] + alj+1]

for j=1to 2000 Loop2
bljl = blj-1] + b[j+1]

Executing

« Can we exploit distributed caches even when the
computation cannot be distributed?
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Can We Exploit Idle Resources ?

[ Interconnect ] 14X cache
fori=1to 100 { space
aisemevalEl B N N

(
aljl = alj-1] + alj+1] L |
for j=1to 2000 Loop2
1471+ !!!!
/
migrate

 Data Spreading uses core-to-core migration to
distribute the data working set among multiple
private caches.
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By Relying on Entirely
Software Techniques

e Works on existing machines

« Can extract application information easily to direct
migration.

 Bridges the gap between complex hardware and

higher program abstraction
« Diverse memory hierarchy - shared/private, inclusive/exclusive
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Our Software Techniques

e Retain serial execution

o Target primarily memory intensive applications

« Use software controlled migration

® |CPP Keynote 2010

Interconnect
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$

Migration
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Software Data Spreading

fori=1to0 100 {

[ forj=1to 1000 Loopl

| 0 , | CPUO
L aljl =alj-11+alj+1] )
for j=1to 2000 Loop2
blj] =blj-1] + b[j+1]
}
Cache -0 Cache -1 Cache -2 Cache -3

Iteration 1 — Spread “a[0:1001]
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Software Data Spreading

fori=1to0 100 {

[ forj=1to 1000 Loopl

—_——_—,—,——e—— e — — e — Y e —— —_——_———

for j=1to 2000 Loop2
blj]=blj-1] + blj+1]

a[0:251] a[250:501] a[500:751] a[750:10011

Cache -0 Cache -1 Cache -2 Cache -3

Iteration 1 —“a[0:1001]" spread across 4 caches
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Software Data Spreading

fori=1to0 100 {
for j=1to 1000 Loopl
alj] =alj-1] + a[j+1]

oooooooooooooooooooooooo

—_—_—— —_———— e e e e e e —————

—_——— — — — _—— — _——,————_— —— —_— —_— —_— ——

a[0:251] a[250:501] a[500:751] a[750:10011]

b[0:501] b[500:1001] b[1000:1501] b[1500:2001]

Cache -0 Cache -1 Cache -2 Cache -3

Iteration 1 — “b[0:2001]" spread across 4 caches
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Software Data Spreading

fori=1to 100 {

|
[
L aljl = alj-1] + a[j+1] )

—_——_—,—,——e—— e — — e — Y e —— —_——_———

oooooooooooooooooooooooo

for j=1to 2000 Loop2
blj]=blj-1] + blj+1]

{ Computation Follows the Data

‘a[0:251]’ in the cache

a[0:251] a[250:501] a[500:751] a[750:10011]

b[0:501] b[500:1001] b[1000:1501] b[1500:2001]

Cache -0 Cache -1 Cache -2 Cache -3

Iteration 2 — Hits in private cache
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Software Data Spreading

fori=1to0 100 {
for j=1to 1000 Loopl
alj] =alj-1] + a[j+1]

for j=1to 2000 Loop2
blj]=blj-1] + blj+1]
/

e No Data Spreading — 3=
— 98% L2 Miss rate

—

e With Data Spreading = ) ) vl
— 2% L2 Miss rate l

—— — — — — — — — — — — — — — —
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Data Spreading Issues

 What loops to spread?

o Target memory-intensive
o Needs the right type of reuse
o Cannot migrate a loop and a containing loop

 When to migrate?
« How to migrate?
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How to Spread Candidate Loops

fori=1 to 100 {

fork=0to3{
Migrate_to_CPU (k)
fori=1t0 100 { Loop0 for ;=]k*25[0+§ to 2[50*](k+1)
: aljl = alj-1] + a[j+1
for j=1to 1000  Loop1 } K
aljl = alj-1] + alj+1] - fork=0to 3 {
....................... Migrate_to_cpu (k)
for =1 to 2000  Loop?2 for j=k*500+1 to 500%*(k+1)
b[]]=b[]—1]+b[]+1] } blj]="blj-1] + b[j+1]
/ J
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Results — Dual Socket Core2Quad

250 —A— Se(-Base
225 - —&— Seq-DS
200 - —— Rand-Base

175 © koY \ 7777777 —=— Rand-DS
150 -

WS fits in combined L2
125 -

100 -
75N e

50 -
36

Memory operations per us

25 -

o=

Working Set (MB)

T
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Migration as a First-Class
Compiler Primitive

« New architectures require new tools for effective
compiler optimization

 Migration enables us to get the best of both worlds
— distributed caches when we have distributed
work, aggregated caches when we don’t

 (removed)
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Non-traditional Parallelism —
the Big Points

« We need to exploit every opportunity to bridge the
gap between available hardware parallelism and
software parallelism

« The more parallel the hardware, the more
performance is dominated by serial execution.

 Non-traditional parallelism enables parallel speedup
of serial code.

« We exploit available threads/cores to

0 Precompute memory addresses
o Generate new, improved code
0 Aggregate private cache space

 What other opportunities are there?
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Questions?

 Collaborators on various projects | talked about
today.

o Jamison Collins
Hong Wang

John Shen
Christopher Hughes
Yong-Fong Lee
Dan Lavery

John P. Shen
Weifeng Zhang
Brad Calder

Md Kamruzzaman
Steven Swanson

O 0O OO0 O 0o 0o 0o o
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