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NERSC Overview 
NERSC represents science needs 

•Over 3000 users, 400 projects, 500 

code instances 

•Over 1,600 publications in 2009 

•Time is used by university 

researchers (65%), DOE Labs (25%) 

and others  

1 Petaflop Hopper system, late 2010  

• High application performance 

• Nodes: 2 12-core AMD processors 

• Low latency Gemini interconnect 
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DOE Explores Cloud Computing 

• In spite of NERSC and other DOE centers 

– Many scientists still buy their own clusters 

– Not efficient for energy or operations 

– Clouds provide centralized resources for diverse         
workloads, including “private virtual clusters” 

• Magellan is a “Science Cloud” Testbed for DOE 

– Installed in early 2010; iDataplex cluster 

• Cloud questions to explore on Magellan: 
– Can a cloud serve DOE’s mid-range computing needs? 

– What features (hardware and software) are needed in a 
Science Cloud?   

– What part of the workload benefits from clouds? 

– Is a Science Cloud from commercial clouds which serve 
primarily independent serial jobs? 
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Science at NERSC 

Fusion: Simulations 

of Fusion devices at 

ITER scale 

Combustion: New 

algorithms (AMR) 

coupled to experiments 

Energy storage: 
Catalysis for 

improved 

batteries and fuel 

cells 

Capture & 
Sequestration: EFRCs 

Materials: 
For solar 

panels and 

other 

applications. Climate modeling: Work 

with users on scalability of 

cloud-resolving models 

Nano devices: New 

single molecule 

switching element 
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Algorithm Diversity 

Science areas 

Dense 

linear 

algebra 

Sparse 

linear 

algebra 

Spectral 

Methods 

(FFT)s 

Particle 

Methods 

Structured 

Grids 

Unstructured or 

AMR Grids 

Accelerator 
Science 

Astrophysics 

Chemistry 

Climate 

Combustion 

Fusion 

Lattice Gauge 

Material Science 

NERSC Qualitative In-Depth Analysis of Methods by Science Area 



Numerical Methods at NERSC 
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• Quantitative (but not so deep) measure of algorithms classes 

• Based on hours allocated to a project that the PI claims uses the method 



NERSC Interest in Exascale 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Top500 

COTS/MPP + MPI 

COTS/MPP + MPI (+ OpenMP) 

GPU CUDA/OpenCL 
Or Manycore BG/Q, R 

Exascale + ??? 

Franklin (N5) 

19 TF Sustained 

101 TF Peak 

Franklin (N5) +QC 

36 TF Sustained 

352 TF Peak 

Hopper (N6) 

>1 PF Peak 

NERSC-7 

10 PF Peak 

NERSC-8 

100 PF Peak 

NERSC-9 

1 EF Peak 
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Danger: dragging users into a local optimum for programming  



Exascale is really about Energy 
Efficient Computing 

At $1M per MW, energy costs are substantial 
• 1 petaflop in 2010 will use 3 MW 

• 1 exaflop in 2018 possible in 200 MW with “usual” scaling 

• 1 exaflop in 2018 at 20 MW is DOE target 

goal 

usual 

scaling 

2005                                      2010                                     2015                                      2020 
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Performance Has Also Slowed, 
Along with Power 
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Moore’s Law Continues with core doubling 



Memory is Not Keeping Pace 

Technology trends against a constant or increasing memory per core 

• Memory density is doubling every three years; processor logic is every two 

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 
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The Challenge 

• Power is the leading design constraint in 
HPC system design 

• How to get build an exascale system without 
building a nuclear power plant next to my 

HPC center? 

• How can you assure the systems will be 
balanced for a reasonable science workload? 

• How do you make it “programmable?” 
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System Balance  

• If you pay 5% more to double the FPUs and get 10% 
improvement, it’s a win (despite lowering your % of peak 
performance) 

• If you pay 2x more on memory BW (power or cost) and get 35% 
more performance, then it’s a net loss (even though % peak 
looks better) 

• Real example: we can give up ALL of the flops to improve 
memory bandwidth by 20% on the 2018 system 

• We have a fixed budget 
– Sustained to peak FLOP rate is wrong metric if FLOPs are cheap 
– Balance involves balancing your checkbook & balancing your 

power budget 

– Requires a application co-design make the right trade-offs 
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Anticipating and Influencing the Future 

Hardware Design 
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Architecture Paths to Exascale 

• Leading Technology Paths (Swim Lanes) 
– Multicore: Maintain complex cores, and replicate (x86 

and Power7) 

– Manycore/Embedded: Use many simpler, low power 
cores from embedded (BlueGene) 

– GPU/Accelerator: Use highly specialized processors 
from gaming space (NVidia Fermi, Cell) 

• Risks in Swim Lane selection 
– Select too soon: users cannot follow 
– Select too late: fall behind performance curve 
– Select incorrectly: Subject users to multiple disruptive 

changes 

• Users must be deeply engaged in this process 
– Cannot leave this up to vendors alone 
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Manycore/Embedded Swim Lane 

• Cubic power improvement with 
lower clock rate due to V2F 

• Slower clock rates enable use 
of simpler cores 

• Simpler cores use less area 
(lower leakage) and reduce 
cost 

• Tailor design to application to 
REDUCE WASTE 

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

This is how iPhones and MP3 players are designed to maximize 
battery life and minimize cost 

15 
Slide by John Shalf, 

Green Flash Project PI 



Manycore/Embedded Swim Lane 

Intel Core2

Intel Atom

Tensilica XTensa

Power 5
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• Power5 (server)  

– 120W@1900MHz 

– Baseline 

• Intel Core2 sc (laptop) : 

– 15W@1000MHz 

– 4x more FLOPs/watt than 
baseline 

• Intel Atom (handhelds) 

– 0.625W@800MHz 

– 80x more 

• Tensilica XTensa DP (Moto Razor) :  

– 0.09W@600MHz 

– 400x more (80x-100x sustained) 

Slide by John Shalf, 

Green Flash Project PI 



Manycore/Embedded Swim Lane 

• Power5 (server)  

– 120W@1900MHz 

– Baseline 

• Intel Core2 sc (laptop) : 

– 15W@1000MHz 

– 4x more FLOPs/watt than 
baseline 

• Intel Atom (handhelds) 

– 0.625W@800MHz 

– 80x more 

• Tensilica XTensa DP (Moto Razor) :  

– 0.09W@600MHz 

– 400x more (80x-100x sustained) 

Intel Core2

Tensilica XTensa

Power 5

Even if each simple core is 1/4th as computationally efficient as complex core, you can 
fit hundreds of them on a single chip and still be 100x more power efficient. 
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Technology Investment Trends 

1990s: Computing R&D dominated by desktop/COTS 
– Learned to use COTS technology for HPC 

2010s: Computing R&D moving to consumer electronics 
– Need to leverage embedded/consumer technology for HPC 

From Tsugio Makimoto: ISC2006 



Co-Design in the Green Flash Project 

• Demonstrated during SC ‘09 

• CSU atmospheric model ported to 
low-power core design 

– Dual Core Tensilica processors running 
atmospheric model at 25MHz 

– MPI Routines ported to custom Tensilica 
Interconnect 

• Memory and processor Stats 
available for performance analysis 

• Emulation performance advantage 
– 250x Speedup over merely function 

software simulator 

• Actual code running - not 
representative benchmark 

Icosahedral mesh 

for algorithm scaling 

John Shalf, Dave Donofrio, Lenny Oliker, Michael 

Wehner, Marghoob Mohiyuddin, Shoaib Kamil 
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Autotuning: Write Code 
Generators for Nodes 
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3D Grid 

+Y 

+Z 

+X 
7-point nearest neightbors 

y+1 

y-1 

x-1 

z-1 

z+1 

x+1 
x,y,z 

Nearest-neighbor 7point stencil on a 3D array 

Use Autotuning! 
 Write code generators and let 

computers do tuning 



Example pattern-specific compiler: 
Structured grid in Ruby

• Ruby class 
encapsulates SG 
pattern
– body of anonymous 

lambda specifies filter 
function

• Code generator 
produces OpenMP 
–  ~1000-2000x faster than 

Ruby
– Minimal per-call runtime 

overhead

class LaplacianKernel < Kernel 
 def kernel(in_grid, out_grid) 
  in_grid.each_interior do |point| 

   in_grid.neighbors(point,1).each  
      do |x| 
     out_grid[point] += 0.2*x.val 
   end 
 end 

end 

VALUE kern_par(int argc, VALUE* argv, VALUE 
self) { 

unpack_arrays into in_grid and out_grid; 

#pragma omp parallel for default(shared)  
private (t_6,t_7,t_8) 
for (t_8=1; t_8<256-1; t_8++) { 

 for (t_7=1; t_7<256-1; t_7++) { 
  for (t_6=1; t_6<256-1; t_6++) { 

   int center = INDEX(t_6,t_7,t_8); 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)])); 

   ... 
   out_grid[center] = (out_grid[center] 

      +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)])); 
;}}} 
return Qtrue;} 

Shoaib Kamil, 

Armando Fox, John 

Shalf, 



 Understand your machine limits 

The “roofline” model 

S. Williams, D. Patterson, L. Oliker, J. Shalf, K. Yelick 
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The Roofline Performance Model 

• The top of the roof is 
determined by peak 
computation rate 
(Double Precision 
floating point, DP for 
these algorithms) 

• The instruction mix, 
lack of SIMD 
operations, ILP or 
failure to use other 
features of peak will 
lower attainable 

peak DP

mul / add imbalance

w/out SIMD

w/out ILP
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The Roofline Performance Model 

peak DP

mul / add imbalance

w/out SIMD
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The sloped part of the 
roof is determined by 
peak DRAM bandwidth 
(STREAM)
Lack of proper prefetch, 
ignoring NUMA, or 
other things will reduce 
attainable bandwidth



The Roofline Performance Model 

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

0.5

1.0

1/8

actual flop:byte ratio

at
ta

in
ab

le
 G
flo

p/
s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

Generic Machine
Locations of posts in the 
building are determined 
by algorithmic intensity 
Will vary across 
algorithms and with 
bandwidth-reducing 
optimizations, such as 
better cache re-use 
(tiling), compression 
techniques



Roofline model for Stencil 
(out-of-the-box code) 

Large datasets
2 unit stride streams
No NUMA 
Little ILP
No DLP
Far more adds than 
multiplies (imbalance)
Ideal flop:byte ratio 1/3

High locality 
requirements
Capacity and conflict 
misses will severely 
impair flop:byte ratio
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Roofline model for Stencil 
(out-of-the-box code) 

Large datasets
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Roofline model for Stencil 
(NUMA, cache blocking, unrolling, prefetch, …) 

Cache blocking helps 
ensure flop:byte ratio is as 
close as possible to 1/3

Clovertown has huge 
caches but is pinned to 
lower BW ceiling
Cache management is 
essential when capacity/
thread is low

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8
1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G
flo

p/
s

4

8

16

32

64

128

1/8
1/4

1/2 1 2 4 8

25% FP

peak DP

12% FP

w/out FMA

peak DP

w/out ILP

w/out SIMD

peak DP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

w/out SIMD

w/out ILP

No naïve SPE
implementation

IBM QS20
Cell Blade



Roofline model for Stencil 
(SIMDization + cache bypass) 

Make SIMDization 
explicit
Use cache bypass 
instruction: movntpd
Increases flop:byte ratio 
to ~0.5 on x86/Cell
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Programming Models that Match 
Machines 
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Develop Best Practices in 
Multicore Programming 

NERSC/Cray Programming 
Models “Center of 
Excellence” combines: 
• LBNL strength in languages, 

tuning, performance analysis 

• Cray strength in languages, 
compilers, benchmarking 

Goals: 

• Immediate goal is training 
material for Hopper users: 
hybrid OpenMP/MPI 

• Long term input into 
exascale programming 
model 

= OpenMP thread parallelism 

31 
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Develop Best Practices in 
Multicore Programming 
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= OpenMP thread parallelism 

Conclusions so far: 
• Mixed OpenMP/MPI 

saves significant 
memory 

• Running time impact 
varies with application 

• 1 MPI process per 
socket is often good 

Run on Hopper next: 

• 12 vs 6 cores per socket 

• Gemini vs. Seastar 
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PGAS Languages: Why use 2 Languages 
(MPI+X) when 1 will do? 

Global address space: thread may directly read/write remote data  
Partitioned: data is designated as local or global 

G
lo
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al
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ss
 s
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e

x: 1 

y:  

l:  l:  l:  

g:  g:  g:  

x: 5 

y:  

x: 7 

y: 0 

p0 p1 pn

Remote put and get: never have to say “receive”  
No less scalable than MPI!  
Permits sharing, whereas MPI rules it out! 
Gives affinity control, useful on shared and distributed memory 



Hybrid Partitioned Global Address 
Space 

Local 
Segment 

on Host  
Memory 

Processor 1 

Shared 
Segment 

on Host 
Memory 

Local 
Segment 

on GPU  
Memory 

Local 
Segment 

on Host  
Memory 

Processor 2 

Local 
Segment 

on GPU  
Memory 

Local 
Segment 

on Host  
Memory 

Processor 3 

Local 
Segment 

on GPU  
Memory 

Local 
Segment 

on Host  
Memory 

Processor 4 

Local 
Segment 

on GPU  
Memory 

Each thread has only two shared segments  

Decouple the memory model from execution models; one 

thread per CPU, vs. one thread for all CPU and GPU “cores” 

Caveat: type system and therefore interfaces blow up with 

different parts of address space 

Shared 
Segment 

on GPU 
Memory 

Shared 
Segment 

on Host 
Memory 

Shared 
Segment 
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Memory 

Shared 
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on Host 
Memory 

Shared 
Segment 

on GPU 
Memory 

Shared 
Segment 

on Host 
Memory 
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on GPU 
Memory 

Work by Yili Zheng 



GASNet GPU Extension Performance 

Latency Bandwidth 

Work by Yili Zheng 



Algorithms to Optimize for 
Communication 
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 Communication-Avoiding  
Algorithms 

• Consider Sparse Iterative Methods 
• Nearest neighbor communication on a mesh 

• Dominated by time to read matrix (edges) from DRAM 

• And (small) communication and global 
synchronization events at each step 

Can we lower data movement costs? 
• Take k steps “at once” with one matrix read  
     from DRAM and one communication phase 
– Parallel implementation 

          O(log p) messages vs.  O(k log p)  

– Serial implementation 
          O(1) moves of data  moves vs. O(k) 

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 
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Know your mathematics! 



Communication-Avoiding  
GMRES on 8-core Clovertown 



General Lessons 

• Early intervention with hardware designs 

• Optimize for what is important:  

           energy  data movement  

• Anticipating and changing the future 

– Influence hardware designs 

– Understand hardware limits 

– Write code generators / autotuners  

– Use programming models that match machines 

– Redesign algorithms for communication 
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Questions? 

See jobs.lbl.gov or send mail if 
you’re interested in joining the team. 
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