
Clouds, Things and Robots:
... the transputer revisited

David May

Bristol August 2017



Background 1975-85

Ideas leading to CSP, occam and transputers originated in the UK
around 1975.

1978: CSP published, Inmos founded
1983: occam launched
1984: transputer announced
1985: transputer launched and in volume production

This introduced the idea of a communicating computer - transputer -
as a system component

Key idea was to provide a higher level of abstraction in system design
- along with a design formalism and programming language

www.cs.bris.ac.uk/˜dave 2 Bristol August 2017



CSP, Occam and Concurrency

Sequence, Parallel, Alternative

Channels, communication using message passing, timers

Parallel processes, parallel assignments and message passing

Secure - disjointness checks and synchronised communication

Scheduling Invariance - arbitrary interleaving model

Initially used for software and programming transputers; later used for
hardware synthesis of microcoded engines, FPGA designs and
asynchronous systems

www.cs.bris.ac.uk/˜dave 3 Bristol August 2017



Transputers and occam

Idea of running multiple processes on each processor - enabling
cost/performance tradeoff

Processes as virtual processors

Event-driven processing

Secure - runtime error containment

Language and Processor Architecture designed together

Distributed implementation designed first

www.cs.bris.ac.uk/˜dave 4 Bristol August 2017



Transputer overview

VLSI computer integrating 4K bytes of memory, processor and
point-to-point communications links

First computer to integrate a large(!) memory with a processor

First computer to provide direct interprocessor communication

Integration of process scheduling and communication following CSP
(occam) using microcode

www.cs.bris.ac.uk/˜dave 5 Bristol August 2017



Transputers 1986

www.cs.bris.ac.uk/˜dave 6 Bristol August 2017



What did we learn?

We found out how to

• support fast process scheduling (about 10 processor cycles)
• support fast interprocess and interprocessor communication

(< 2 microseconds)
• make concurrent system design and programming easy - using

lots of processes
• implement specialised concurrent applications (graphics,

databases, real-time control, scientific computing)

and we made some progress towards general purpose concurrent
computing using recongfigurablity and high-speed interconnects

www.cs.bris.ac.uk/˜dave 7 Bristol August 2017



What did we learn?

We also found that

• we needed more memory (4K bytes not enough!)
• we needed efficient system-wide message passing
• we needed support for rapid generation of parallel computations

• 1980s embedded systems didn’t need 32-bit processors or
multiple processors

• most programmers didn’t understand concurrency

www.cs.bris.ac.uk/˜dave 8 Bristol August 2017



General Purpose Concurrency

Key architectural ideas emerged:
• scale interconnect throughput with processing throughput
• hide latency with process scheduling (multi-threading)

Potentially these remove the need to design specialised processors
and interconnects

Emerging software patterns: Task Farms, Pipelines, Data Parallelism
...

But no easy way to build subroutines and libraries!

www.cs.bris.ac.uk/˜dave 9 Bristol August 2017



Meiko and EPCC 1987

Built in Bristol using Inmos Transputers designed in Bristol

www.cs.bris.ac.uk/˜dave 10 Bristol August 2017



Routers

We built the first VLSI router - a 32 channel packet switch

It was designed as a component for interconnection networks
allowing latency and throughput to be matched to applications

Note that - for scaling - capacity grows as p× log(p); latency as log(p)

Low latency at low load is important for initiating processing; low
(bounded) latency at high load is important for latency hiding

Network structure and routing algorithms must be designed together
to minimise congestion (hypercubes, randomisation ...)

www.cs.bris.ac.uk/˜dave 11 Bristol August 2017



C104 router 1990

www.cs.bris.ac.uk/˜dave 12 Bristol August 2017



Bristol’s embedded processors

Inmos - STMicroelectronics: transputers, Chameleon, ST20, ST200

Infineon: Tricore

Element14 - Broadcom: Firepath

Pixelfusion - Clearspeed: GPU

Picochip: Picoarray

XMOS: XCore

Graphcore: IPU ... ?

www.cs.bris.ac.uk/˜dave 13 Bristol August 2017



The last 20 years

We have known how to do general purpose parallel computing since
1990

But the explosive growth of PCs has taken us in a different direction

Implementing Moore’s ‘law’ is only possible with exponential market
growth

But there has been exponential market growth so we have spent 20
years improving on 1980s technologies

... most superscalar techniques date from the 1960s (IBM 360/91)!

www.cs.bris.ac.uk/˜dave 14 Bristol August 2017



Clouds, Things and Robots

PCs are disappearing; we are now doing clouds, things and robots

We need scalable multiprocessors - on-chip and in-the-large

We need lots of interprocessor communication

We need lots of responsive input-output

We need to focus on software efficiency - stop relying on Moore’s ‘law’

We need predictability - of timing, power and energy

www.cs.bris.ac.uk/˜dave 15 Bristol August 2017



Why timing matters

In parallel processors, there are many potential sources of timing jitter
- in processors, caches, memory and interconnect

Have to manage latencies in communication
... can’t manage latency if you don’t know how big it is

Have to provide synchronisation (barriers) in control flow or data flow
... these are delayed by the slowest participant

May need to use buffers to maintain rates when processing streams
... can’t determine buffer sizes if you don’t know the variance in timing

www.cs.bris.ac.uk/˜dave 16 Bristol August 2017



Time-determinism

Many parallel programs rely on synchronisation (barriers, reductions)

Execution must be time-deterministic - but many systems aren’t!

p: probability of no unexpected delay when executing program P

Suppose n copies of P in execute in parallel, then synchronise

Probability that the synchronisation will not be delayed = pn

• For n = 100 and p = 0.99, pn = 0.37
• For n = 1000 and p = 0.99, pn = 0.00004

Contention in interconnection networks gives rise to similar problems

www.cs.bris.ac.uk/˜dave 17 Bristol August 2017



The ‘Random Access’ Memory

Programmers think of computers as sequential machines accessing a
random access memory - but in practice there is a complex hierarchy
of caches

Let’s explore the effects of the memory hierarchy, and of superscalar
execution - executing lots of instructions at the same time

Let’s write three similar programs, all of which sum the contents of a
large array initialised by

for (i=0; i < maxi; i++)
for (j=0; j < maxj; j++)
a[i][j] = i;

www.cs.bris.ac.uk/˜dave 18 Bristol August 2017



Three programs (1)
int prog1()
{ int i;
int j;
int sum;
sum = 0;
for (i=0; i < maxi; i++)
{ j = 0;
while (j < maxj)
{ sum = sum + a[i][j];
j = j + 1;

}
}

www.cs.bris.ac.uk/˜dave 19 Bristol August 2017



Three programs (2)
int prog2()
{ int i;
int j;
int sum;
sum = 0;
for (j=0; j < maxj; j++)
{ i = 0;
while (i < maxi)
{ sum = sum + a[i][j];
i = i + 1;

}
}

www.cs.bris.ac.uk/˜dave 20 Bristol August 2017



Three programs (3)
int prog3()
{ int i;
int j;
int sum;
sum = 0;
for (j=0; j < maxj; j++)
{ i = 0;
while (i < maxi)
{ sum = sum + a[i][j];
i = a[i][j] + 1;

}
}

www.cs.bris.ac.uk/˜dave 21 Bristol August 2017



Three programs - performance
In 1980, these three programs would have had the same performance

Today, program 3 is over 100 times slower than program 1

The processors rely on both latency minimisation and latency hiding
... they rely on the program containing ‘parallelism’

But no-one would think of these as ‘parallel’ programs

Parallel composition is an essential programming tool: need to
minimise variance in runtime, not average runtime

Efficient processors for parallel computing are not the same as
efficient processors for sequential computing

www.cs.bris.ac.uk/˜dave 22 Bristol August 2017



Sharing memory

Sharing the memory hierarchy makes things worse

It increases contention in the caches - associativity needs to scale
with number of threads or cores

Cache coherency protocols introduce unexpected effects

And shared memory makes programming difficult
• non-deterministic behaviour
• non-deterministic timing

... a programmer has no idea what’s happening ‘behind the scenes’

www.cs.bris.ac.uk/˜dave 23 Bristol August 2017



Communication, input and output

Pipelined superscalar processors take a long time to respond

... so communication has to be offloaded to hardware devices

... along with input and output

The processor still has to interact with the hardware devices

But what if a programmed response to an external event is needed?

... and what about the numerous short messages in real programs?

High communication latency limits parallelism and makes
programming difficult

www.cs.bris.ac.uk/˜dave 24 Bristol August 2017



Software and Algorithms
We need to architectures that are easy to use, so that we can focus
on software efficiency

Efficient software can add a lot of value by increasing performance
and energy-efficiency

And big data sets bring big opportunities for better software and
algorithms:

Reducing the number of operations from N ×N to N × log(N) has a
dramatic effect when N is large

... for N = 30 billion this change is as good as 50 years of technology
improvements!

www.cs.bris.ac.uk/˜dave 25 Bristol August 2017



Architecture revisited
General purpose parallelism - built on message passing

Predictable, low-latency communications
... short message latency < 100 instructions

The processors have to keep up with the interconnect and they don’t
have to be complex - just predictable

Programmable interfacing (horizontal execution; not pipelining)

Event-driven processing

Avoid heterogeneous architecture - although it’s fine for the
architecture to enable heterogeneous implementations

www.cs.bris.ac.uk/˜dave 26 Bristol August 2017



Universality

Turing: a Universal Machine can emulate any specialised machine

For Random Access Machines, the emulation overhead is constant

Is there an equivalent Universal Parallel Machine?

A key component is a Universal Network

Idea: A Universal Processor is an infinite network of finite processors

Another Idea: Use a non-blocking network

www.cs.bris.ac.uk/˜dave 27 Bristol August 2017



Universal Parallel Processors

Universal networks emulate specialised networks

Universal processors emulate specialised processors

Networks must have scalable throughput (bisection bandwidth)

Networks must have low latency (log(p)) under continuous load

Use network pipelining for continuous (stream) processing: optimal

Use latency hiding otherwise: optimal with log(p) ‘excess’ parallelism

www.cs.bris.ac.uk/˜dave 28 Bristol August 2017



Program Structures

Parallel Random Access Machines

Data Parallelism; Systolic Arrays

Directed Dataflow Graphs

Task Farms and Server Farms

Sequential programs(!)

Recursive Embedding of any of the above

www.cs.bris.ac.uk/˜dave 29 Bristol August 2017



Communication Patterns

Communication and data access patterns are often known, especially
in embedded processing (but also in HPC)

Communication can often be implemented as a series of permutation
routing operations between known endpoints

For known patterns, compilers can allocate processors and network
routes

For unknown patterns, use randomisation

For many-to-one, use hashing and combining (or replication)

www.cs.bris.ac.uk/˜dave 30 Bristol August 2017



Composition

Patterns can be composed and embedded within each other

Sometimes the entire program evolution is visible to a compiler

Sometimes the evolution is data-sensitive

The issues in allocating processors and network routes mirror those
of allocating memory in sequential processing

... local, global, stack, heap

How fast can a computation spread?

www.cs.bris.ac.uk/˜dave 31 Bristol August 2017



Clos and Benes Networks

Clos networks implement permutations on their inputs - no contention

A strict-sense network can always allocate a new route

A re-arrangeable network needs fewer routers but may require
re-arrangement of existing routes

Known permutation + re-arrangeable => Compile-time (or on-the-fly)

Unknown pattern + re-arrangeable => Run-time using randomisation

Benes networks are easily partitioned into sub-networks

www.cs.bris.ac.uk/˜dave 32 Bristol August 2017



Folded Benes Network
edge core

www.cs.bris.ac.uk/˜dave 33 Bristol August 2017



Partitions and Synchronisation

Within a switch, synchronised messages are forwarded from both
inputs before a following synchronised message is forwarded

This enables an entire partition to perform a series of distinct
permutations; it is in-order pipelined

One-one communication: single permutation

Many-many communication: series of permutations
... compiling this series is an extension of network path allocation

One-many: series of permutations forming a tree from source

www.cs.bris.ac.uk/˜dave 34 Bristol August 2017



Sequential Programs
... implementing a large program with a set of small processors

Distribute data structures across processors

Distribute procedures, functions and objects across processors

Accesses to data are less than 10% of instructions; calls are less
than 5%

No contention - network is under-loaded

Optimisations: concurrent accesses and concurrent calls; moving
program to data

www.cs.bris.ac.uk/˜dave 35 Bristol August 2017



Programming Languages

Many recent programming languages need garbage collected
memory

... this currently uses stop-the-world or concurrent collectors

Several languages need detection of array-bound violations and
arithmetic overflows

... this currently uses libraries and is inefficient

All of this can be done efficiently in hardware ...

www.cs.bris.ac.uk/˜dave 36 Bristol August 2017



Memory management

A mark-sweep-compact garbage collector can be implemented in a
small state-machine

Each state-transition makes at most one memory access

Transitions can be arbitrarily interleaved with instruction execution
... using memory cycles not needed by instructions

The instruction set architecture includes get-memory instructions

Array-bound violations checked in hardware; memory cleared during
sweep

www.cs.bris.ac.uk/˜dave 37 Bristol August 2017



Processor management

Garbage-collected memory could potentially be extended to
garbage-collected processes

The mark phase would involve sending marking messages along
channels

A synchronisation would take place, followed by sweep, and another
synchronisation

This would support some new (?) programming techniques such as
concurrent recursive find-first, achieve-bound, chose-best at deadline

www.cs.bris.ac.uk/˜dave 38 Bristol August 2017



Fault containment

In a connected world, a small fault can have unlimited effects ...

And in a world of robots, a small fault can have physical effects ...

It’s best to contain faults as soon as they arise

... array bound violations, arithmetic overflows, out-of-range shifts

Need a standard for integer arithmetic!

And by providing move as well as copy, we can make concurrency
safe even when passing pointers

www.cs.bris.ac.uk/˜dave 39 Bristol August 2017



Caches
It is possible to make caches that are predictable

An easy way is to use separate caches for the program, stack and
data of each processor/process

The program and stack caches can be direct map, The data cache
should be fully associative with least-recently-used replacement

A better approach is to use a partitioned cache that enables software
control over the partitioning

... this means that the cache can be divided to prevent interference
between processes - and between accesses to different data objects

www.cs.bris.ac.uk/˜dave 40 Bristol August 2017



The need for Innovation

Align performance of processors, memory and interconnect (current
processors optimised for speed, DRAMs optimised for density)

Support for real-time parallel computing and scalable input-output

Support for fault-containment

Support for modern programming languages, especially concurrent
and parallel ones

A lot of improvements could be made based on existing architectures
... or we could do something new

www.cs.bris.ac.uk/˜dave 41 Bristol August 2017



Commodity parallel processing

Ideally, we want to build processing like memory

Choose an economical chip size (70mm2 for DRAM, 100mm2 for logic)

... 100mm2 will hold hundreds of computers

Stack them up in 3D using through-silicon-vias.

Connect the stacked devices using silicon photonics and wavelength
division multiplexing

General purpose components with behaviour defined by software

www.cs.bris.ac.uk/˜dave 42 Bristol August 2017



The open transputing architecture

Components for clouds (especially the edge), things and robots

Deterministic processing nodes with garbage collection

Low latency communication and input-output

Nodes for deterministic, non-blocking networks

Concurrent programming language and tools

Safe concurrency with error containment

... a higher level of abstraction in system design!

www.cs.bris.ac.uk/˜dave 43 Bristol August 2017


	
	Background hfill 1975-85
	CSP, Occam and Concurrency
	Transputers and occam
	Transputer overview
	Transputers hfill 1986
	What did we learn?
	What did we learn?
	General Purpose Concurrency
	Meiko and EPCC hfill 1987
	Routers
	C104 router hfill 1990
	Bristol's embedded processors
	The last 20 years
	Clouds, Things and Robots
	Why timing matters
	Time-determinism
	The `Random Access' Memory
	Three programs (1)
	Three programs (2)
	Three programs (3)
	Three programs - performance
	Sharing memory
	Communication, input and output
	Software and Algorithms
	Architecture revisited
	Universality
	Universal Parallel Processors
	Program Structures
	Communication Patterns
	Composition
	Clos and Benes Networks
	Folded Benes Network
	Partitions and Synchronisation
	Sequential Programs
	Programming Languages
	Memory management
	Processor management
	Fault containment
	Caches
	The need for Innovation
	Commodity parallel processing
	The open transputing architecture

