Issues in developing the new generation high performance computers

- 4.4

Depei Qian Beihang University ICPP 2015, Beijing Sep. 4, 2015

Outline

- A brief review
- Issues in developing next generation supercomputers
- Prospects

A brief review

The 863 program

- The most important high-tech R&D program of China since 1987
- Proposed by 4 senior scientists and approved by former leader Deng Xiaoping in March 1986
- A regular R&D program, named after the 5-year plan, current the 12th 5-year 863 program
- 8 areas, Information Technology is one of them
- Strategic, looking-ahead, frontier research on major technologies supporting China's development
- Emphasize technology transfer and adoption of research outcomes by industry
- Encourage enterprise participation

Evolution of 863's emphasis

- 1987: Intelligent computers
 - Influenced by the 5th generation computer program in Japan
- 1990: from intelligent computer to high performance computers
 - Emphasize practical HPC capability for research and industry
- 1998: from high performance computer system to HPC environment
 - Emphasize resource sharing and ease of access
 - Broaden usage of the HPC systems

Evolution of 863's emphasis

- 2006: from high performance to high productivity
 - Emphasize other metrics such as programmability, program portability, and reliability besides peak performance
- Current: from HPC environment to HPC application service environment
 - Emphasize integrated efforts on HPC systems, HPC environment, and HPC applications
 - Explore new mechanisms and business models for HPC services
 - Promote the emerging computing service industry

Three key projects on HPC

- 2002-2005: High Performance Computer and Core Software (863 key project)
 - Efforts on resource sharing and collaborative work
 - Developing grid-enabled applications in multiple areas
 - Successfully developed TFlops computers and China National Grid (CNGrid) testbed
- 2006-2010: High Productivity Computer and Service Environment (863 key project)
 - Emphasizing other system features besides the peak performance
 - Efficiency in program development
 - Portability of programs
 - Robust of the system
 - Addressing the service features of the HPC environment
 - Successfully developed Peta-scale computers, upgraded CNGrid into the national HPC service environment

The three key projects on HPC (cont'd)

- 2010-2016: High Productivity Computer and Application Service Environment (863 key project)
 - Exploring new operation models and mechanisms of CNGrid
 - Developing cloud-like application villages over CNGrid to promote applications
 - Developing world-class computer systems
 - Tianhe-2
 - Sunway-NG
- Emphasizing balanced development of HPC systems, HPC environment, and HPC applications

HPC systems developed in the past 20 years

- 1993: Dawning-I, shared memory SMP, 640 MIPS peak
 - Dawning 1000: MPP, 2.5GFlops (1995)
 - Dawning 1000A: cluster (1996)
 - Dawning 2000: 111GFlops (1999)
 - Dawning 3000: 400GFlops (2000)
- 2003: Lenovo DeepComp 6800, 5.32TFlops peak, cluster
- 1993-2003: performance increased 8000+ times

HPC systems developed in the past 20 years (cont'd)

- 2004: Dawning 4000A, Peak performance 11.2TFlops, cluster
 - Lenovo 7000,150TFlops peak, Hybrid cluster and Dawning 5000A, 230TFlops, cluster (2008)
 - TH-1A, 4.7PFlops peak, 2.56PFlops LinPack, CPU+GPU (2010)
 - Dawning 6000, 3Pflops peak, 1.27 PFlops LinPack, CPU+GPU (2010)
 - Sunway-Bluelight, 1.07PFlops peak, 796TF LinPack, Homogeneous, implemented with China's multicore processors (2011)
- 2013: Tianhe-2, 54PFlops peak and 33.9PFlops LinPack, CPU+MIC accelerated architecture
- 2003-2013: performance increased 10000 times
- 84,000,000 times in 20 years (1,000,000 times in TOP500)

Dawning 6000

TH-1A

First phase of TH-2

- Delivered in May 2013
- Hybrid system
 - 32000 Xeon, 48000Xeon Phis, 4096 FT CPUs
- 54.9PF peak, 33.86PF Linpack
- Interconnect
 - proprietary TH Express-2
- 1.4PB memory, 12PB disk
- Power: 17.8MW
- Installed at the National Supercomputing Center in Guangzhou

Second phase of TH-2

- The implementation scheme of the second phase of TH-2 was evaluated and approved in July of 2014
 - Upgrading interconnect (completed)
 - Increasing No. of computing nodes (completed)
 - Upgrading computing nodes
 - Upgrade the accelerator from Knight Conner to Knight Landing
 - Change the ratio of CPU to MIC from 2:3 to 2:2

Second phase of TH-2 (cont'd)

- The scheme has to be changed because of the new embargo regulation of the US government
- Completion of the second phase will be delayed
- The final TH-2 has to rely on indigenous FT processors, a stimulation to the R&D on kernel technologies in China
- The development of the new FT processors is on going

- The second 100PF system (Sunway-NG?) will be developed by the end of 2016
- A large system implemented with indigenous SW many-core processors in together with a smaller multicore system (1PF) implemented with commercial processors to meet the requirement of different applications
- The SW processor is under development

HPC environment development in the past 15+ years

- 1999-2000: National HPC Environment
 - 5 nodes
 - Equipped with Dawning computers
- 2002-2005: China National Grid (CNGrid), a testbed of new infrastructure
 - enabled by CNGrid GOS
 - 8 nodes
 - 18TF computing power
 - 200TB storage
- 2006-2010: CNGrid service environment, emphasizing service features
 - enabled by CNGrid Suite
 - 14 nodes
 - 8PF aggregated computing power
 - >15PB storage
 - >400 software and tools as services
 - supporting >1000 projects

CNGrid sites	S	o.C	$) \circ 0$
		CPU/GPU	Storage
Interview Interview Interview Interview	SCCAS	157TF/300TF	1. 4PB
	SSC	200TF	600TB
	NSC-TJ	1PF/3. 7PF	2PB
	NSC-SZ	716TF/1.3PF	9. 2PB
	NSC-JN	1. 1PF	2PB
	THU	104TF/64TF	1PB
	IAPCM	40TF	80TB
	USTC	10TF	50TB
	XJTU	5TF	50TB
	SIAT	30TF/200TF	1PB
	HKU	23TF/7.7TF	130TB
	SDU	10TF	50TB
SIAT HKU	HUST	3TF	22TB
	GPCC	13TF/28TF	40ТВ
			//)

Current development of CNGrid (2011-2015)

- CNGrid is treated as a layer of virtual resources available to the up-layers
- Establishing domain-oriented application villages (communities) on top of CNGrid, which provide services to the end users
- Developing business models and operation mechanisms between CNGrid and application villages
- Developing enabling technologies and platform supporting CNGrid transformation
- Application villages currently being developed
 - Industrial product design optimization
 - New drug discovery
 - Digital media

HPC applications in the past 15+ years

- 1999-2000: a set of demo-applications developed over the National HPC environment
- 2002-2005: productive applications
 - 11 grid-enabled applications in 4 selected areas
- 2006-2010: productive applications and large scale parallel software
 - 8 grid-enabled applications
 - 8 HPC-enabled applications
 - A parallel library
 - Up to 10,000-core level of parallelism achieved

- Application software development supported
 - Fusion simulation
 - CFD for aircraft design
 - Drug discovery
 - Rendering for Digital media
 - Structural mechanics for large machinery
 - Simulation of electro-magnetic environment
- Level of Parallelism required
 - Effective use of more 300,000 cores with >30% efficiency
- Must be productive systems in the real applications

Experiences

- Coordination between the national research programs and the development plans of the local government
 - Matching money for developing the computers
 - Joint effort in establishing national supercomputing centers
- Collaboration between industry, universities, research institutes, and application organizations
 - HPC centers played an important role in the development of high performance computers
 - Industry participated in system development
 - Inspur, Sugon, Lenovo actively participated in the development of PFand 50PF-scale high performance computer systems
 - Application organizations led the development of application software

Weakness identified

- Lack of some kernel technologies, a lesson learned from the recent embargo
 - more R&D required on kernel technologies
 - stronger emphasis on self-controllable technologies
 - ecosystem for technology development is crucial
- HPC application is weak
 - rely on imported commercial software, also affected by embargo
 - needs for developing software in key application areas
 - open-source software will become more important
- HPC environment development is not sustainable
 - lack of long-term funding
 - need new models and mechanisms, unique condition in China
- Shortage of talents
 - need to develop new HPC-related curriculum in universities
 - continuous training during R&D

Issues in developing next generation supercomputers

Major challenges towards Exa-scale systems

- Major challenges
 - performance obtained by applications
 - power consumption limit
 - programmability
 - Resilience
- Addressing challenges by
 - Architectural support
 - Technical innovations
 - Hardware/software coordination

Constrained design principle

- Set up constraints on
 - Scale of the system
 - number of the nodes: 30,000-100,000
 - Footprint of the system
 - number of the cabinets < 300
 - Power consumption
 - energy efficiency of 30-50GF/W
 - Cost
 - relatively constant for every generation of supercomputers

- Understand the workload characteristics of typical exa-scale applications
 - earth system modeling, fusion simulation, turbulence simulation, materials simulation, bioinformatics data analysis,
- Co-design based on application characteristics
 - propose architecture appropriate for major applications
 - Look for architectural support to major algorithms
- Develop metrics and benchmarks to understand how well the architecture adapts to the applications

1. Architecture

- Classifying architectures using "homogeneity/heterogeneity" and "CPU only/CPU+Accelerator"
- Homo-/Hetero refers to the "ISA"

	CPU only	CPU+Acc
Homogeneous	Sequoia K-computer Sunway/BL	Stampede TH-2
Heterogeneous	Dawning 6000/HPP (AMD+Loonson)	TH-1A TITAN Dawning 6000/Nebulae, Tsubame 2.5

1. Architecture consideration

- Accelerated architecture vs homogeneous manycore architecture
 - To meet the requirements of a wide range of applications
 - Pairwise CPU/accelerator or stand-alone bulk accelerators?
 - CPU/GPU coordinated performance is only slightly higher than using GPU only in some applications
 - utilization of accelerator resources is sometimes low
- Reconfigurable architecture
 - Take the advantages of both special purpose or general purpose
 - Static or dynamic reconfigurable
 - Languages and tools to support reconfiguration are crucial

- Making trade-offs between performance, power consumption, programmability, resilience, and cost
 - Hybrid architecture (TH-1A & TH-2)
 - General purpose + high density computing (GPU or MIC)
 - HPP architecture (Dawning 6000/Loonson)
 - Enable different processors to co-exist
 - Support global address space
 - Multi-level of parallelism
 - Multi-conformation and Multi-scale adaptive architecture (SW/BL)
 - Cluster implemented with Intel processor for supporting commercial software
 - Homogeneous system implemented with domestic multicore processors for computing-intensive applications
 - Support parallelism at different levels

TH-1A/TH-2 architecture

- Hybrid system architecture
 - Computing sub-system (CPU+GPU/MIC)
 - Service sub-system
 - Communication networks
 - Storage sub-system
 - Monitoring and diagnosis sub-system

Sunway BlueLight Architecture

Main features

- SW1600 CPU: 16 cores/975~1100MHz/1 24.8~ 140.8Gflops;
- Fat-tree based interconnection, QDR 4×10Gbps high speed serial transmission between nodes, MPI message latency of 2µs;
- SWCC/C++/Fortran/ UPC/MPICC/Scientific library;
- Storage: 2PB, theoretical I/O bandwidth: 200GB/s, IOR(~60GB/s);

2. Processor

- Processor is the key element to achieve performance and energy efficiency
 - 20MW system power consumption requires processor with 100GF/W energy efficiency
 - very difficult to achieve
- Processor micro-architecture
 - heterogeneous many-core
 - trade-off between die area and speed
 - on-chip specialized processing units used when needed
- High memory access bandwidth
- On-chip memory and networks

3. Memory

- Byte/Flops ratio becomes very low
 - <3% for 100PF systems, even lowers for exaflops systems</p>
 - Require fundamental change in algorithm
- Speed gap between the computing cores and the memory becomes larger
- Require both high bandwidth and low latency
 - Bandwidth
 - Wide memory data path and high cache hit rate
 - Latency
 - Improved by high cache hit + prefetching
 - Prefetch
 - when? where? and what size?
 - adaptive prefetching according to the nature of the programs
- Introducing new memory devices into memory hierarchy
 - increases memory space while reducing the power consumption
 - NVM as buffer: disk-NVM-DRAM-cache
 - NVM as part of main memory: hybrid memory
- 3D packaging is a solution to improve memory performance
 - introducing new problems in memory and cache organization
 - appropriate lay-out to shorten the wires

4. Interconnect

- Three major requirements
 - Scalability
 - scalable to support interconnect of large number of nodes
 - Bandwidth
 - high bandwidth for performance
 - Latency
 - Low latency is critical for synchronization and short message passing
- Affected by network topology, link technology, and the communication protocol
- Both system level interconnect and on-chip interconnect should be studied
- Energy consumption will limit the increase of link data rate
- New technology demanded
 - silicon photonic communication
 - new topology
 - new light weight protocol

TH-2 Interconnect

- High speed interconnect chipset
 - interconnect interface chip N10
 - PCle 3.0 x16 host interface
 - Link rate 14Gbps
 - Network connection bandwidth 12GB/s
 - Low latency message passing and high bandwidth RDMA
 - high radix router chip HNR
 - 24 port, network port bandwidth 12GB/s
 - 376Tbps Single chip throughput
 - Support distributed multi-path adaptive routing

TH-2 Interconnect (cont'd)

- Fat-tree topology
- Maximum 18432 nodesal
- Optical-electric hybrid transport technology
- Proprietary network protocol

5. Energy efficiency

- Energy saving measures
 - At different level
 - devices/node/system
 - With different approaches
 - hardware/software/coordinated
 - In different aspects
 - computing system/cooling/power supply/computing room
 - At different time
 - static: energy-aware programming and tuning
 - energy-tuner might become a standard tool as the debugger and performance tool, they altogether address energy efficiency, correctness, performance of the program, respectively
 - dynamic: runtime scheduling and DVFS control

SW/BL cooling system

- Efficient cooling
 - Water cooling to the node board
 - Energy-saving
 - Environment-friendly
 - High room temperature
 - Low noise

- Parallel programming becomes a common practice for all application developers, not only HPC
- Difficulty introduced by heterogeneity, requires new language/compiler support, new performance tools
- A holistic approach in supporting many-core parallel programming needed

A holistic approach supporting manycore programming

Parallel programming framework

- Hiding the complexity of parallel programming
 - Integrating efficient implementation of fast parallel algorithms
 - Providing efficient data structures and solver libraries
 - Supporting software engineering practice in large scale parallel software development

Four components

- –JASMIN: adaptive structured mesh
- –PHG: parallel hierarchical grid
- –JAUMIN: adaptive unstructured mesh
- –JCOGIN: mesh-free combinatory geometry

7. Parallel algorithms

- Algorithms must adapt to low ratio of memory capacity and computing capability
- Re-design algorithms to match the heterogeneous architecture
- Architecture-aware algorithms vs architecturesupport to algorithm implementation
 - requires efforts from both sides: the programmers and architects
- Performance and power consumption are sensitive to data move, must reduce data move in algorithm implementation

8. Resilience

- Resillience measures
 - At different levels
 - device/component/system
 - In different aspects
 - hardware/software/coordinated
 - With different approaches
 - redundancy to hide failure
 - checkpointing to recover execution
 - new checkpointing mechanism to deal with very short MTBF
 - reduce the context
 - use new media to store
- Accurate monitoring
 - more embedded sensors to capture failures
 - efficient data collection for large-scale system monitoring
 - accurate data analysis to identify failures
- Fast recovery from the failure
 - accurate locating and isolation of faults
 - reconfiguration of the system

- Effective management and efficient use of large scale heterogeneous resources to achieve more predictable performance
- Dynamic matching demand and resource by runtime
- Reduce interference among co-run programs in competing shared resources
 - Interference-aware scheduling and dynamic migration
- Resource virtualization to enable effective resource sharing

Prospects

The structure of the new national R&D Programs

- Five tracks in the new national research systems
 - Basic research program
 - Mega-research program
 - Key research and development program
 - Enterprises-oriented research program
 - Research centers and talents program

Key R&D program

- The track 3 is of the biggest change
 - including previous 863, 973, and ebabling programs, and other ministerial level R&D programs
- A transit period of 2015-2016
 - No new 863, 973 projects will be launched in 2015 and 2016

A new proposal on HPC

- Strategic studies have been organized jointly by the 863 key project and the Supercomputing Innovation Alliance under the guidance of the MoST
- A proposal for the key project on HPC in the 13th five-year plan has been submitted
- The decision has not been made

- The key value of developing Exa-scale computers identified
 - Addressing the grand challenge problems
 - energy, environment, climate change...
 - Enabling industry transformation
 - simulation and optimization for high speed train design, aircraft design, automobile design,...
 - support SME
 - Social development and people's benefit
 - drug discovery, weather forecast, precision medicine, digital media...
 - Scientific discovery
 - high energy physics, computational chemistry, new material, cosmology...
- Boost computer industry by technology transfer
- Self-controllable HPC technologies
 - A lesson learnt from the recent embargo regulation

Goal and major tasks

- Goal
 - Pursuing the leading position in HPC system development
 - Strengthen development of kernel technologies
 - Promote HPC applications
 - Build up HPC infrastructure with service features and explore the path to the HPC service industry
- Major tasks
 - Next generation supercomputer development
 - CNGrid upgrading and transformation
 - Domain HPC applications development

Risk and difficulties

- Un-secured matching funding
 - the funding from national R&D program is not enough
 - getting matching funding from the local government and user institutes is difficult to continue
- Energy efficiency metrics is difficult to achieve
 - The biggest obstacle to exe-scale computers is the power budget, difficult to achieve 50GF/W
- Ecosystem for indigenous processors has not been established
 - The system software and application software for indigenous processors is not enough
 - Establishing an eco-system for indigenous processors is crucial
- Collaborative research is crucial to success
 - Too much emphasis on competition, less collaboration because of the current evaluation system
 - Must find the way to collaboratively conduct R&D on the next generation supercomputer

Thank you!