The Coming Era of
Adaptive Control Systems
in HPC

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu

= PARALLEL (D
E }NIVEESJIW£ILLIBIIOIS ERBAECHA}APAIGSN PROGRA MMING LAB m




I

Just as | was preparing this

* | read an abstract of a talk yesterday:

— “Supercomputing has had two "easy" decades”

« where most of the increased performance of supercomputers
came from the increase in uniprocessor performance

« | thought we were having fun these decades
— But not because it was easy

« But then, | trust Marc Snir (who said this)..
— And he did put those quotes
— So, it means its going to get even harder

« We all know why: sophisticated apps, complex machines

— More fun, and more employment!

PPL

UIUC




What control systems am | talking about?

Runtime Systems?

Java runtime:

— JVM + Java class library
— Implements JAVA API

MPI runtime:

— Implements MPI standard API

— Mostly mechanisms

| want to focus on runtimes that are “smart”
— i.e. include strategies in addition to mechanisms
— Many mechanisms to enable adaptive strategies

T PPL
3 UIUC




Why?
And what kind of adaptive
runtime system I have 1n

mind?

[et us take a detour




FI1G. 4.--Governor and Throttle-Valve.

Source: Wikipedia




Governors

« Around 1788 AD, James Watt and
Mathew Boulton solved a problem
with their steam engine

— They added a cruise control... well,
RPM control

— How to make the motor spin at the
same constant speed

— If it spins faster, the large masses
move outwards

— This moves a throttle valve so less
steam is allowed in to push the prime
mover

6 UIUC




Feedback Control Systems Theory

« This was interesting:

— You let the system “misbehave”, and use that
misbehavior to correct it..

— Of course, there is a time-lag here

— Later Maxwell wrote a paper about this, giving
impetus to the area of “control theory”

Measured System

Reference + error input System output
Controller System
Sensor |(

Measured output

] Source: Wikipedia PPL

7 UIUC




Control theory

 The control theory was concerned with
stability, and related issues

— Fixed delay makes for highly analyzable system
with good math demonstration

« We will just take the basic diagram and two
related notions:
— Controllability
— Observability

PPL

UIUC




A modified system diagram

Output variables

System >
Observable/
Control Actionable
variables variables
¥
controller

Metrics
that we
care about

PPL

UIUC




Source: Wikipedia

Archimedes is supposed to have said, of the lever:

Give me a place to stand on,
and | will move the Earth

10

PPL

UIUC




Need to have the lever

« Observability:

— If we can’t observe it, can’t act on it

« Controllability:

— If no appropriate control variable is available, we
can’t control the system
« (bending the definition a bit)
« So: an effective control system needs to
have a rich set of observable and
controllable variables

PPL

e UIUC




A modified system diagram

_ some of these are
Output variables

System Metrics
that we care about
Observable/
Actionable
Control variables
variables i,
controller

These include one or more:
* Objective functions (minimize, maximize, optimize)
e (Constraints: “must be less than”, ..

. | 1 UIUC




Feedback Control Systems in HPC?

« Let us consider two “systems”

— And examine them for opportunities for
feedback control

« A parallel “job”

— A single application running in some partition

« A parallel machine
— Running multiple jobs from a queue

PPL

LS UIUC




I

A Single Job

« System output variables that we care about:

— (Other than the job’s science output)

— Execution time, energy, power, memory usage, ..

— First two are objective functions
— Next two are (typically) constraints
— We will talk about other variables as well, later

« What are the observables?

— Maybe message sizes, rates? Communication
graphs?

 What are the control variables?
— Very few. Maybe MPI buffer size? Bigpages?

14

PPL

UIUC




Control System for a single job?

« Hard to do, mainly because of the paucity of
control variables

« This was a problem with “Autopilot”’, Dan
Reed’s otherwise exemplary research
project
— Sensors, actuators and controllers could be

defined, but the underlying system did not
present opportunities

« We need to “open up” the single job to
expose more controllable knobs

T PPL
15 UIUC




Alternatives

Each job has its own ARTS control system, for
sure

But should this be:

— Specially written for that application?

— A common code base?

— A framework or DSL that includes an ARTS?
This is an open question, | think..

— But it must be capable of interacting with the
machine-level control system

My opinion:

— Common RTS, but specializable for each application

T PPL
16 UIUC




The Whole Parallel Machine

« Consists of nodes, job scheduler, resource
allocator, job queue, ..

« Qutput variables:

— Throughput, energy bill, energy per unit of work,
power, availability, reliability, ..

* Again, very little control

— About the only decision we make is which job to
run next, and which nodes to give to it..

— Maybe a few more ideas now, in the context of
energy:
« How many nodes to leave idle
« What power limit to assign to a job

T PPL
17 UIUC




The Big Question/s:

How to add more control variables?
How to add more observables?

And then, how to build a powertul
adaptive control system?




It so happens ©

My group’s research over the past 15-20
years can be thought of as a quest to add
more observables and control variables

— Programming models, languages ,libraries,
including:
« Charm++, AMPI, Charisma, MSA, Charj,
 Now, I'd like to consolidate the experience
and knowledge gained, and express it in a
new abstract programming model

PPL

L UIUC




XMAPP

« XMAPP is an abstract programming model:
— That means it characterizes a set of prog. models
 For a programming model to belong to this set, it
must support

— X: Overdecomposition
« (as in: 8X objects than cores)
— M: Migratability
— A: Asynchrony
« and Adaptivity, as a consequence of all the above

 So, XMAPP stands for:

— Overdecomposition-based Migratibility, Asynchrony and
Adaptivity in Parallel Programming

PPL

20 UIUC




Members of XMAPP-class

 The programming models in XMAPP, or exhibit some
features of it

— Charm++

— Adaptive MPI Also, general work on adaptivity
— KAAPI is relevant: Trilinos, Hank

— ProActive Hoffman/UIC, ...

— FG-MPI (if it adds migration)

— HPX (once it embraces migratability)

— ParSEC

— CnC

— MSA (multi-phase Shared arrays)

— Charisma

— Charj

— DRMS (old abstraction from IBM research..)

— Chapel: may be a higher level model

— X10: has asynchrony, but not migratable units

— Tascel

T PPL
21 UIUC




Over-decomposition

« Let the programmer decompose a computation into
entities
— Work units, data-units, composites
— Into coarse-grained set of objects
— Independent of number of processors

« Let the entities communicate with each other without
reference to processors
— So each entity is like a virtual processor by itself

« Let an intelligent runtime system assign these
entities to processors
— RTS can change this assignment during execution

 This empowers the control system
— A large number of observables
— Many control variables created

T PPL
22 UIUC




Grainsize

It is important to understand what | mean
by coarse-grained entities

— You don’t write sequential programs that some
system will auto-decompose

— You don’t write programs when there is one
object for each float

— You consciously choose a grainsize, BUT choose
it independent of the number of processors
« Or parameterize it, so you can tune later

23

PPL

UIUC




Crack Propagation

This is 2D, circa 2002...
but shows over-decomposition for unstructured meshes..

SRS e A
Decomposition into 16 chunks (left) and 128 chunks, 8 for
each PE (right). The middle area contains cohesive elements.
Both decompositions obtained using Metis. Pictures: S.
Breitenfeld, and P. Geubelle

24

PPL

UIUC




Grainsize example: NAMD

High Performing examples: (objects are the
work-data units in Charm++)

On Blue Waters, 100M atom simulation,
— 128K cores (4K nodes), 5,510,202 objects

Edison, Apoal (92K atoms)
— 4K cores , 33124 objects

Hopper, STMV, 1M atoms,
— 15,360 cores, 430,612 objects

T PPL

UIUC




Grainsize: Weather Forecasting in BRAMS

« Brams: Brazillian weather code (based on RAMS)
« AMPI version (Eduardo Rodrigues, with Mendes , J. Panetta, ..)

Blll
IIIIIIID

Instead of using 64 work units on 64 cores, used 1024 on 64 PP

46 BraDS: OOLA/IGES

20 UIUC




Working definition of grainsize :
amount of computation per remote interaction

Choose grainsize to be just large
enough to amortize the overhead

1 processor

Time

N /

P processors

Grainsize




Grainsize in a common setting

Jacobi3D running on JYC using 64 cores on 2 nodes

' 2048xé048x2048 (toltal problelm size) —_—

4 .
. 2 MB/chare,
Q .
2 256 objects per core
-
o
g 2 b W T — R ——

1 | | | | | |

4K 16K 64K 512K 2M 8M 32M 128M

number of points per chare

28

PPL

UIUC




Impact on communication

e Current use of communication network:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

« So, current communication networks are over-
engineered for by necessity

BSP based application Q
0 O 4




Impact on communication

« With overdecomposition
— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

P ,

Overdecomposition enables overlap - J
30 0\/




Object-based over-decomposition: Charm++

« Multiple “indexed collections” of C++ objects

 Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

ha
-/E)Xi -@ ......................................

USe]/‘ VieW ...................................... -+

T PPL
31 UIUC




— |

u

.O D'\w\ DD
8 - = _ @ "

Processor | Frocessor 2
[T N [ [T |

Message Queue Message Queue
—

] m
= UIUC




Note the control points created

« Scheduling (sequencing) of multiple method
invocations waiting in scheduler’s queue

« Observed variables: execution time, object
communication graph (who talks to whom)

« Migration of objects

— System can move them to different processors at
will, because..

« This is already very rich...
— What can we do with that??

T PPL
33 UIUC




Optimizations Enabled/Enhanced by
These New Control Variables

« Communication optimization

« Load balancing

 Meta-balancer

 Heterogeneous Load balancing
 Power/temperature/energy optimizations
« Resilience

« Shrink/Expand sets of nodes

« Application reconfiguration to add control
points

« Adapting to memory capacity

T PPL
34 UIUC




Principle of Persistence

 Once the computation is expressed in terms of
its natural (migratable) objects

« Computational loads and communication
patterns tend to persist, even in dynamic
computations

« So, recent past is a good predictor of near
future

In spite of increase in irregularity and
adaptivity, this principle still applies
at exascale, and is our main friend.

I




Measurement-based Load Balancing

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

36 UIUC




XMAPP 1deas and features
have been demonstrated in
full-scale production
Charm++ applications




NAMD: Biomolecular simulations

 Collaboration with K.
Schulten

« With over 45,000
registered users

« Scaled to most top US

supercomputers

* |In production use on Recent success:
supercomputers and Determination of the
clusters and desktops structure of HIV capsid

. Gordon Bell award in by researchers including
2002 Prof Schulten

T PPL
38 UIUC




ChaNGa: Parallel Gravity Evolution of Universe and
Galaxy Formation

« Collaborative project
(NSF)
— with Tom Quinn, Univ. of
Washington
« Gravity, gas dynamics

« Barnes-Hut tree codes
— Oct tree is natural decomp

— Geometry has better
aspect ratios, so you
“open” up fewer nodes

— But is not used because it
leads to bad load balance

— Assumption: one-to-one With Charm++: use Oct-
map between sub-trees Tree, and let Charm++ map
and PEs subtrees to processors

— Binary trees are considered
][ better load balanced ——

10/3/13 ICPP2013 39 uIuc




AP e R RS ligdetpigs ; _ ~
| £ 0 " Keith Bisset, Madha’v Marathe = Day 1
T 2 ; : ,
e - ,'f’.‘ “ 5
£ t - J \"l
S Ue
Spread of Infection: P
‘ Agent-based Simulation = “&
Infection Prevalence - % Population "ata 2 510, *NOAA U.S. Navy, NGA, GEBCO s
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Imagb@ 2011 TerraMetrics f-(_;L)()({IC
L

lma’?e USDA Fakhr Sérvice Agency
,‘0 2011 Cnes/Spot Image



An upcoming book
Surveys seven
major applications
developed using
Charm++

Parallel Science and Engineering Applications

The Charm++ Approach

= oy
Laxmikant V. Kale
Abhinav Bhatele

UIUC




I

Saving Cooling Energy

Easy: increase A/C setting
— But: some cores may get too hot

So, reduce frequency if temperature is high
— Independently for each core or chip

But, this creates a load imbalance!

No problem, we can handle that

— Migrate objects away from the slowed-down procs
— Balance load using an existing strategy

— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— PASA “12: Exploiting differential sensitivities of code
segments to frequency change

42

PPL

UIUC




Fault Tolerance in Charm++/AMPI

 Four Approaches:
— Disk-based checkpoint/restart Ships in Charm-++
— In-memory double checkpoint/restart dstibution. foryears
— Proactive object migration

— Message-logging with parallel restart. scalable fault
tolerance

« Common Features:
— Leverages object-migration capabilities
— Based on dynamic runtime capabilities

« Several new results in the last year:
— FTXS 2012: scalability of in-mem scheme
— Hiding checkpoint overhead .. with semi-blocking..
— Energy efficiency of FT protocols : best paper SBAC-PAD

T PPL
43 UIUC




Another idea for
Increasing
controllable variables:

Reconfigurable
Applications




App based Creation of Control Points

« A richer set of control points can be generated
if we enlist help from the application
— Or its DSL runtime, or compiler

e The idea is:

— Application exposes some control knobs
— Describes the effects of the knobs

— The RTS observes performance variables, identifies
the knobs that will help the most, and turns them in
the right direction

« Examples: granularity, yield frequencies in
inner loops, CPU-Accelerator balance

T PPL
45 UIUC




Load Balancing Framework

« Charm++ load balancing framework is an
example of “customizable” RTS

« Which strategy to use, and how often to call
it, can be decided for each application
separately

« But if the programmer exposes one more
control point, we can do more:

— Control point: iteration boundary

— User makes a call each iteration saying they can
migrate at that point

— Let us see what we can do: metabalancer

T PPL
46 UIUC




Meta—-Balancer

« Automating load balancing related
decision making

« Monitors the application continuously
— Asynchronous collection of minimum statistics

 |dentifies when to invoke load balancing
for optimal performance based on

— Predicted load behavior and guiding principles
— Performance in recent past

PPL

<7 UIUC




Fractography: Without LB

Utilization Graph (Summary)

300
Time Interval (1s)

. UIUC



Meta-Balancer on Fractography

W e

T
|\|Uu||\u : 'm’\

« ldentifies the need for frequent load balancing in the beginning
« Frequency of load balancing decreases as load becomes balanced
* Increases overall processor utilization and gives gain of 31%

T PPL
49 UIUC




Shrink/Expand job

If a job is told to reduce the number of
nodes it is using..

It can do so now by migrating objects..
Same with expanding the set of nodes used
Empowered by migratability

50

PPL

UIUC




Inefficient Utilization within a cluster

Allocate A !
16 Processor ( @eflietibd )
system \ /

0 Job A

o __NREEER

O
A
\
OF 8 processors
Job B

;TI[ urrent Job Schedulers can lead to low system utilization ! PPL
. | 51 UIUC




Adaptive Job Scheduler

Scheduler can take advantage of the
adaptivity of XMAPP jobs

Improve system utilization and response time

Scheduling decisions

— Shrink existing jobs when a new job arrives
— Expand jobs to use all processors when a job finishes

Processor map sent to the job

— Bit vector specifying which processors a job is allowed to
use

« 000TT1100 (use 3 4 and 5)
Handles regular (non-adaptive) jobs

PPL

- UIUC




Two Adaptive Jobs

Albqaads !

16 Processor

system \
] Job A

o -
Q
/ \
&
Min_pe =8

Nl
6‘%\03
Max_pe= 16 -
P

58

PL

UIUC




-

\

Jobl

Per job
RTS

~

v

4 Job2 A
Per job
RTS
NG /

Rich Interaction desirable: currently there 1s very little

Whole Machine RTS

4 Jobk A
Per job
RTS
N /
PPL




Whole machine runtime

 Job schedulers and resource allocators:

— Accept more flexible QoS specifications from jobs
« Creating more control variables

— “moldable” specification:
e This job needs between 3000-5000 nodes
« Memory requirements..
« Topology sensitivity, speedup profiles,...

— Malleable:

« this job can be told to shrink/expand after it has started

T PPL
55 UIUC




Whole machine control

Monitor failures, and act in job-specific
ways

Global power constraints:

— Inform, negotiate with and constrain jobs
Thermal management

/0O system and job |I/O interactions

Shrink and Expand jobs as needed to
optimize multiple metrics

56

PPL

UIUC




Novel, Revolutionary and Old?

« These concepts have been around for a
while

— E.g. Charm++ even in the present form is 13-15
years old

« An analogy might help

T PPL
57 UIUC




Dinosaurs, mammals and primates

« When the asteroid created a shock to the
ecosystem
— For us, multiple asteroids together:
« End of frequency scaling,
Complex heterogeneous hardware,
Thermal, power, energy issues,
Component failures
increasingly complex apps
— Dinosaurs (well.. MPl) and mammals (XMAPP) both
existed
e But dinosaurs died out, mammals survived, and evolved

further

 The premium on “smart” rather than “big” in the
ecosystem eventually saw the emergence of humans

— Well.. Bending the truth a bit for the sake of analogy
« Well, dinosaurs survived as birds... maybe MPI 57

T PPL
58 UIUC




XMAPP models: adoption

* |t is challenging to get the community to
adopt a new programming model

— And here we are talking about a whole class of
them!

It helps
— To get a few from-scratch success stories
— Some apps may get “refactored” to use the new
model (Episimdemics)
« But large-scale adoption will be helped if we
can support true “interoperability”

T PPL
59 UIUC




Interoperation of Parallel Languages

-— e e e e e e e e e -

» Implement a library in  |7paniese i

| mpi_module1(data); | (- ————==-

the language that suits o __ _ _____J (Grmeeicaat |
- () T |
it the most, and use e e @@

| // do work
t h e m to g et h e r I :}charm_module1 (data); : ;;h;mtm_oduleE(dZtaT{—

|
__________ J / do work |
mpi_module2(data); I

« MPI + UPC, MPI + g mediezdad 0 - C T (ay 0l )
OpenMP + Charm++ ®Y

(a) Time Division (b) Space Division (c) Hybrid
P(1) ] ] - J 1 ] | ] ]
P(2) ] ] 1 1 ] | ] ]
P(n-1) [ ] ] ] ]
P(n) ] ] ] ] >
Language1 Language 2 Time




Is Interoperation Feasible in
Production Applications?

Application Library Productivity = Performance
CHARM in MPI HistSort in 195 lines 48x speed
(on Chombo) Charm++ removed up in Sorting
EpiSimdemics MPI IO Write to single 256x faster
file input
NAMD FFTW 280 lines less Similar
performance

Charm++’s ParMETIS Parallel graph Faster
Load Balancing partitioning applications

T PPL
UIUC




I

Conclusions

We need a much richer control system
— For each parallel job
— For parallel machine as a whole

Current status: paucity of control variables

Programming models can help create new
observable and controllable variables

As far as | can see,
— XMAPP class programming models,
with overdecomposition and migratability, and

the resultant asynchrony and adaptivity
are the main vehicle for this..

— Do you see other ideas?

62

PPL

UIUC




Conclusion

« HPC community suggestions:
— Develop new XMAPP models

« But: make sure you develop it in the context of at least
two reasonable-size applications

— Collaborate and compete on runtime adaptation
strategies, based on the common assumptions
of XMAPP models

* Possibly develop standards for mature pieces

See you at Charm++ BOF at
I am looking for a postdoc SC: Tuesday noon

and/or a research programmer _
More info on Charm++:

http://charm.cs.illinois.edu

T PPL
63 UIUC




