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Game theory in distributed processing

Game theory

Founded by J. Von Neumann (also a pioneer in computers) and O.
Morgenstern Theory of Games and Economic Behavior, published in 1944.

Definition (Roger Myerson,Game Theory, Analysis of Conflicts)
Game theory can be defined as the study of mathematical models of
conflict and cooperation between intelligent rational decision-makers.
Game theory provides general mathematical techniques for analyzing
situations in which two or more individuals make decisions that will
influence one another’s welfare.

Mainly used in mathematical economy.
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Game theory in distributed processing

Game theory in economy, Nobel prizes

Alvin E. Roth and Lloyd S. Shapley (2012): cooperative games

Roger B. Myerson (2007, 1951): eq. in dynamic games

Leonid Hurwicz (2007, 1917-2008): incentives

Eric S. Maskin (2007, 1950): mechanism design

Robert J. Aumann (2005, 1930): correlated equilibria

Thomas C. Schelling (2005, 1921): bargaining

William Vickrey (1996, 1914-1996): pricing

Robert E. Lucas Jr. (1995, 1937): rational expectations

John C. Harsanyi (1994, 1920-2000): Bayesian games, eq. selection

John F. Nash Jr. (1994, 1928): NE, NBS

Reinhard Selten (1994, 1930): Subgame perf. eq., bounded rationality

Kenneth J. Arrow (1972, 1921): Impossibility theorem

Paul A. Samuelson (1970, 1915-2009): thermodynamics to econ.
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Game theory in distributed processing

Game Theory in networks

Game theory has been used in communication networks for the last 15
years, with increasing popularity.
Number of documents found in Google scholar when searching the
following keywords (from E. Altman, 2011)

Power Flow Rate Access Jamming Routing
control control control control

networks, G.T. 391,000 174,000 264,000 298,000 17,000 38,000

Evolution of the number of documents on routing games (from Publish or
Perish):

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
N. docs. 51 49 190 150 216 324 358 459 459 539 570
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Game theory in distributed processing

Game Theory and distributed algorithms

A recent interest in distributed algorithm community.
Game theoretical vision of distributed systems:
A set of processes (players) compete over ressources. Each process takes
its own decisions and want to maximize its own good. The behavior of the
whole system is the superposition of the individual behavior of all players.

The ideal case is when the common good (social optimum) coincides with
the selfish interest of each player.

Sheds a new light on issues like: stability, self-optimization, malicious
behaviors.
Allows one to design new distributed algorithms.
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Multi-flow routing and Games

Multi-flow routing

Consider a directed graph G = (V ,E );
A set of K connections, given by source-sink couples
(S1,D1), . . . (SK ,DK ) and rates r1, . . . rK ;
Latencies on the edges `e(x).

c2 = r2 + (r1 + r2) + 2r2

S1 D1

3x

1 1

x

x

2x

1

1

1

S2

D2

End to end latencies:

c1 = 3r1 + (r1 + r2) + 1

Find a traffic flow that minimizes end-to-end latencies of the connections.
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Multi-flow routing and Games

Latency functions

The affine case: `e(x) = ax + b.

The queueing case: If each edge has a limited capacity (µe), then the
latency is
`e(x) =

x

µe − x
The case of a wifi network

`e(x) =
x (TDATA + TACK + 2TTBO(x) + 2TW (x))

LTCP
LTCP = 8000 bits is the size of a TCP packet, TACK is the
transmission times of TCP ACK (approx. 1.091 ms), TDATA the
transmission times of a TCP data packet (about 1.785 ms), TW and
TTBO are the mean total time lost due to collisions and backoffs.
The real case: The latency function does not have a closed formula,
may decrease with the load and is not convex in general. It can only
be measured.
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Multi-flow routing and Games

Several types of connections

Atomic case: K connections, each connection sends all its traffic along
one path.
Atomic-splittable case: K connections, each connection can split its
traffic along several paths
Non-atomic case: K connection types (one type is a pair (S ,D)),
each type is made of an infinite number of small packets, each one
having an infinitesimal impact.
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Multi-flow routing and Games

Applications

These kinds of problems appear in
Ground transportation design (non-atomic),
communication networks (wifi networks, ad-hoc networks) (atomic
splittable),
vertical handover in cellular networks (atomic),

bipartite graph,
delay replaced by throughput,
congestion replaced by interference,

spectrum management in MIMO systems (atomic splittable).
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Multi-flow routing and Games

Game Model

This problem can be seen as a routing game where
the players are the connections (also called users),
the actions of one connection are the flows allocated in each path from
source to sink
and the costs are the end-to-end latencies.

Connections are non-cooperative: they want to minimize their personnal
latency and do not care about the other connections.
A Nash equilibrium is a configuration where no connection can improve on
iys latency by changing its path.
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Multi-flow routing and Games

Nash Equilibria Properties

Congestion games always admit Nash equilibria (not necessarily
unique). [Nash], [Beckmann et al. 56],
Efficient computation of Nash and optimal flows [Dafermos-Sparrow,
69],
Quantification of the cost of a lack of cooperation (price of anarchy)
[Roughgarden-Tardos, 02]

Non-intuitive behavior of Nash equilibria:
Price of anarchy is unbounded (4/3 for affine latencies).
Braess paradox: adding routes may increase the latencies for all the
connections.
Adding cooperation between connections may increase the latencies
for all the connections.

B. G. (Inria) routing algo. ICPP, Oct. 2013 11 / 44



Multi-flow routing and Games

Nash Equilibria Properties

Congestion games always admit Nash equilibria (not necessarily
unique). [Nash], [Beckmann et al. 56],
Efficient computation of Nash and optimal flows [Dafermos-Sparrow,
69],
Quantification of the cost of a lack of cooperation (price of anarchy)
[Roughgarden-Tardos, 02]

Non-intuitive behavior of Nash equilibria:
Price of anarchy is unbounded (4/3 for affine latencies).
Braess paradox: adding routes may increase the latencies for all the
connections.
Adding cooperation between connections may increase the latencies
for all the connections.

B. G. (Inria) routing algo. ICPP, Oct. 2013 11 / 44



Multi-flow routing and Games

Braess Paradox (from Roughgarden, 2000)

One non-atomic connection type (with rate 1).

x

S D
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1

In Nash equilibrium the flow splits evenly, packet latency is 1.5

0S D

x 1

1 x

By adding a fast link (0 latency), packet latency is 2 at Nash equilibrium
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Multi-flow routing and Games

Cooperation paradox ( Cominetti et al. 2009)

0
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In Nash equilibrium, the latencies for flows of types 1 and 2 is 1.9
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By adding cooperation within type 2 (they want to minimize their total
latency instead of individual ones), the new Nash equilibrium has latency
1.9 for type 1 and 1.99 for type 2.
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Learning algorithm

Learning algorithm

We want to design a distributed algorithm (executed by each user) that
learns the Nash equilibria. Each user computes its route according to a
sequential process that should satisfies the following desired properties:

only uses local information (each connection only sees its own latency)
(stateless).
does not use coordination between the users (time-oblivious)
tolerates outdated measurements on the value of the current
end-to-end latency (delay-oblivious)
tolerates random perturbations or inacuracies on the values of the
latencies (robust)
converges fast even if the number of users is very large (scalable)
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Learning algorithm

Main Ideas

Here are the main ingredients to design the algorithm:

Randomize the choices of actions
Learn from past mistakes
Go back and forth between time-continuous models and discrete
models.
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Learning algorithm

Atomic routing game

Main characteristics:
Let us consider a game
G = (K,A, g) with a finite
number of players.
each player k ∈ K chooses
an action ak ∈ Ak (finite).
the gain for user k is
denoted gk(ak , a−k).

Routing game
We consider a routing game.
players are connections;
actions are routes from
source to destination;
gains are opposite of
end-to-end latencies.
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Learning algorithm

Best Response algorithm

BR
Repeat

Choose randomly a user k ∈ K
For All route α ∈ Ak

compute the gain gk(α, a−k)
Choose one α∗ that maximizes the gain

Theorem
Best Response (BR) converges to a Nash equilibrium in finite time a.s..

The game G is a potential game with potential F (a) =
∑
k

gk(a).
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Learning algorithm

Best Response algorithm assessment

Stateless: yes and no
Robust: no
Time-oblivious: no
Delay-oblivious: no
Scalable: no

Futhermore, it may converge to any Nash equilibria, the ratio with the
social optimal can be arbitrarily large.

B. G. (Inria) routing algo. ICPP, Oct. 2013 18 / 44



Learning algorithm

Gibbs Sampling Algorithm

Let us randomize the choices:

GSA
For ever

Choose randomly a user k ∈ K;
For All action α ∈ Ak

r kα := exp(
1
τ
gk(a, s−k));

Pick α ∈ Ak with probability
r kα∑

β∈Ak
r kβ
;

Theorem ([Blume, 93])
The Gibbs Sampling Algorithm GSA, finds an “optimal” equilibrium with
high probability, when τ is close to 0.
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Learning algorithm

Gibbs Sampling Algorithm assessment

Stateless: yes and no
Time-oblivious: no
Robust: no
Delay-oblivious: no
Scalable: no
Convergence becomes very slow when τ gets close to 0.
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Non-Asynchronous Revisions

Non-Asynchronous Revisions

A partial synchronous revision process is given by probability measures ρa
over the set 2K,
(Example: each player decides to play independently )

GSA-Rev
For All time step n

Choose a set of users V according to ρa.
For All user u ∈ V

For All action α ∈ Au

ruα := exp(
1
T
gu(α, a−u));

Pick action α ∈ Au with probability
ruα∑

β∈Au
ruβ
;
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Non-Asynchronous Revisions

Relation with best response

Theorem (Coucheney, 2010)
The asymptotically stable states of GSA-Rev are recurrent vertices of the
best response graph B (not Nash equilibria in general).

Corollary (Durand, 2012)
If the Nash equilibria are strict and if the support of ρa is isolable, then the
asymptotically stable states of GSA-Rev are Nash equilibria.

Let B be the best response graph of the game: there is an arc between
(a, b) if there exists a revision set V such that a−V = b−V and

∀u ∈ V , bu ∈ BRu(a).
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Noisy measurements kill convergence.

Noisy measurements

Player k can only measure her gain gk(a) up to some noise (e.g. i.i.d.
white Gaussian noise).

Consider a game with one player and two actions (with gains 2 and 1).
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Score and Choice

Score and Choice

The main problem of the Gibbs sampling algorithm comes from its
Markovian nature. One way to make the learning procedure robust is to
take into account the history of the process.

Score: Each user plays at discrete times s = 0, 1, . . . , t. The score is a
discounted average of the payoff:

yα(t) = gα(t) + λyα(t − 1),

or
yα(t) =

∑t

s=0
λt−sgα(s),

where λ ∈ (0,+∞) is the model’s discounting parameter.
Choice: The choice of the next action is still based on a Gibbs distribution.
The probability to select route α is:

xα =
exp(yα)∑
β exp(yβ)

= Gibbsα(y), u ∈ A
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Score and Choice

Continuous time

The continuous time version of the (score,choice) equation

y(t) =
∑t

s=0
λt−sg(s), x(t) = Gibbs(y(t))

is

y(t) =

∫ t

0
λ(t−s)g(s)ds,

x(t) = Gibbs(y(t)),

By differentiating w.r.t. time , (ED1)

ẏ(t) = g(t)− Ty(t)

x(t) = Gibbs(y(t))

by setting T
def
= log(1/λ).
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Score and Choice

Entropy Driven dynamics (II)

The two stage dynamics can be written in x instead (with some
algebra).Entropy-driven dynamics (ED2):

ẋα = xα

gα(x)−
∑
β

xβgβ(x)

− Txα

log xα −
∑
β

xβ log xβ


for T = 0, (ED2) freezes to the ordinary replicator dynamics:

ẋα = xα

gα(x)−
∑
β

xβgβ(x)

 .
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Score and Choice

Entropy Driven dynamics (III)
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Score and Choice

Lyapunov function and convergence

The game G is a finite potential game with potential F .
The function U(x)

def
= Th(x)− F (x) is Lyapunov for (ED):

for any interior orbit x(t) of (ED),
d

dt
U(x(t)) ≤ 0 with equality iff x(0) is

a rest point.

Theorem (Folk theorem for (ED))

Let x(t) be a solution orbit of the entropic dynamics (ED) for the potential
game G. Then:
For T > 0 and x(0) > 0, x(t) converges to the rest points of (ED).

The rest points of the entropy-driven dynamics (ED) converge to the Nash
equilibria of G when the temperature approaches 0.
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Score and Choice

Convergence of Driven dynamics
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Discrete Algorithm

Discrete Algorithm on Scores

Stochastic discrete version of (ED1): ẏ = g − Ty , x = Gibbs(y)

ED-Score
Repeat

For each player k ∈ U

Choose action ak(n) according to Gibbs

(
Y k
β (n)

)
compute the new score:

Y k
ak
(n + 1) := Y k

ak
+ εn+1

1
Xak

(
gk(a)− TY k

ak

)
.

The discrete process (Y (n)) generated by Algorithm ED-Score is a
stochastic approximation of the Entropy Driven dynamics (ED1):

E
[
Y (n + 1)− Y (n)|Y (n)

]
εn+1

= g(X (n))− TY (n)
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Discrete Algorithm

Discrete Algorithm on Strategies (ED2)

ED-Strat
Repeat

For Each Player k ∈ N simultaneously
Pick action α̂k according to the mixed strategy Xk

For Each Player k ∈ N
ĝk ← gk(α̂) # current payoff
For Each action α ∈ Ak

Xα ← Xα + εn+1

[
−TXα

(
logXα −

∑
β
Xβ logXβ

)
+ ĝ (1α̂k=α − Xα)

]
The discrete process (X (n)) generated by Algorithm ED-Strat is a
stochastic approximation of the entropy driven dynamics.
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Discrete Algorithm

Stability Properties

For every positive learning temperature T , the sequence of iterates
generated by Algorithm ED-Strat are stochastically stable, i.e.
sup
n
||Y (n)|| <∞ almost surely.

This is not true for ED-Score.

Theorem
The discrete algorithm ED-Strat converges to the stable rest points of the
continuous ED dynamics (that are very close to the Nash equilibria of the
game when T is small) .

B. G. (Inria) routing algo. ICPP, Oct. 2013 32 / 44



Discrete Algorithm

Stability Properties

For every positive learning temperature T , the sequence of iterates
generated by Algorithm ED-Strat are stochastically stable, i.e.
sup
n
||Y (n)|| <∞ almost surely.

This is not true for ED-Score.

Theorem
The discrete algorithm ED-Strat converges to the stable rest points of the
continuous ED dynamics (that are very close to the Nash equilibria of the
game when T is small) .

B. G. (Inria) routing algo. ICPP, Oct. 2013 32 / 44



Discrete Algorithm

Convergence rates

Density for 104 executions, after 0,10,20 or 30 iterations. (play a film).
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Discrete Algorithm

Average trajectory
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Average trajectories do not follow the continuous vector field (esp. when
the tempereture is high).
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Discrete Algorithm

Robustness w.r.t. asynchronous revision and delays

Let us consider asynchronous versions of algorithm ED-Strat.

Let Rn be the random set of players that update their choice at time n,
δij(n) be the delay faced by player i in receiving outputs from j at step
n.

If (Rn)n∈N is an irreducible Markov chain and δi ,j(n) are bounded a.s.
then, the modified algorithm is a stochastic approximation of a modified
differential equation ẋ = λ(t)ED(x), where λk(t) is the rate at which
player k updates its strategy.
The modified ED has the same stable rest points as the original one.
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Discrete Algorithm

Robustness w.r.t. noisy payoffs

Assume that the payoffs gk are only known up to some noise ξk(α), that
forms a difference of maringales.
If ξk(α) is bounded a.s., and independent of αk , the action chosen by
player k , then the theorem holds when the current payoff gk(α̂) is replaced,
by gk(α̂) + ξk(α̂).

The noise can depend on the entire history of the game. Also, the
independence hypothesis is true when the randomness comes from
uncertainty on the actions taken by the other players.
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Discrete Algorithm

Revised algorithm ED-Strat

ED-Strat for player k

Repeat
At local time tk(n), Pick action α̂k according to the mixed strategy

Xk

Measure (or compute) ĝ ← gk(α̂)
For Each action α ∈ Ak

Xα ← Xα + εn+1

[
−TXα

(
logXα −

∑
β
Xβ logXβ

)
+ ĝ (1α=α̂k

− Xα)
]
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Discrete Algorithm

Algorithm ED-Strat assessment

Stateless: yes and yes
Time-oblivious:yes
Robust: yes
Delay-oblivious: yes
Scalable: yes (no formal proof in general)
speed of convergence does not decrease too fast with the temperature.

Its only parameter (T ) should be easy to tune: A small temperature gives
better results but slows the speed of convergence and alters the numerical
stability (the scores grow larger and although they do not appear explicitly,
they still affect the values of X ). The optimal choice of the temperature
giving a good compromise between accuracy and speed of convergence, is
problem dependent.
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Application to MIMO systems

Application to Spectrum management in MIMO systems

We consider a MIMO system made of K non-cooperative MIMO
transmitters who upload data to a receiver. Each transmitter wants to
improve its individual achievable rate gk by unilaterally changing its signal
covariance matrix Qk , where

gk(Q) = log det
(
Wk + HkQkH

†
k

)
− log det (Wk) , (1)

where
Wk = I +

∑
6̀=k H`Q`H

†
` (2)

This is a congestion (routing) game, so let us check the performance of our
algorithm in this case.
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Application to MIMO systems

Tuning the temperature
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ô Τ = 0.100
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ì Τ = 0.050

à Τ = 0.025

æ Τ = 0

Temperature

MIMO system consisting of a wireless base receiver with 5 antennas and
K = 25 transmitters, each with a random number mk of transmit antennas
picked uniformly between 2 and 6.
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Application to MIMO systems

Scalability
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Temperature is fixed to τ = 10−3, the number of users varies: K = 10, 25,
50 and 100.
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Application to MIMO systems

Efficiency with measurement errors
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Gaussian noise is added to all measurements. The relative error is 100%
(average magnitude of the error is same as the true value). ED-Score is
compared with classical techniques (water filling and iterative water filling).
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Application to MIMO systems

Speed of convergence and tracking
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The performance of entropy-driven learning under changing channel
conditions (with Jakes fading).
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Conclusion

Thank you for your attention.
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